Electrical, optical and magnetoresistive behavior of nanostructured ZnO:Cu thin films deposited by sputtering
Copper doped ZnO (ZnO:Cu) nanostructured films with magnetoresistive behavior were produced by growing ZnO/Cu/ZnO arrays at room temperature (RT) by the sputtering technique on corning glass substrates. The arrays were made with two electrical insulating ZnO films of 50 and 105 nm, and a Cu film of...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2018-09, Vol.29 (18), p.15339-15343 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Copper doped ZnO (ZnO:Cu) nanostructured films with magnetoresistive behavior were produced by growing ZnO/Cu/ZnO arrays at room temperature (RT) by the sputtering technique on corning glass substrates. The arrays were made with two electrical insulating ZnO films of 50 and 105 nm, and a Cu film of 5 nm, both materials were deposited at RT by the RF- and DC-sputtering technique, respectively. The processing method involves two stages that proceed in the course of the growth process, the main one is originated by the non-equilibrium regime of the sputtering technique, and the second is the diffusion-redistribution of the intermediate Cu film towards the neighborhood ZnO layers aided by the nanocrystalline films character. The influence of applying an additional annealing stage to the arrays in N
2
atmosphere at 250 and 350 °C by periods of 30 min were studied. The resistivity of the ZnO:Cu films can be varied from 0.0034 to 2.83 Ω-cm, corresponding to electron concentrations of 1.12 × 10
21
and 7.85 × 10
17
cm
−3
with carrier mobility of 1.6 and 2.8 cm
2
/V s. Measured changes on the magnetoresistance behavior of the films at RT were of ∆R ~ 3% for annealed samples with electron concentration of 1.12 × 10
21
cm
−3
. The X-ray diffraction measurements show that the films are comprised of nanocrystallites with dimensions between 13 and 20 nm in size with preferred (002) orientation. The transmittance of the films in the visible region was of 83% with an optical band gap of ~ 3.3 eV for the low-resistivity samples. |
---|---|
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-018-8854-1 |