Universal Method for Stochastic Composite Optimization Problems

A fast gradient method requiring only one projection is proposed for smooth convex optimization problems. The method has a visual geometric interpretation, so it is called the method of similar triangles (MST). Composite, adaptive, and universal versions of MST are suggested. Based on MST, a univers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2018, Vol.58 (1), p.48-64
Hauptverfasser: Gasnikov, A. V., Nesterov, Yu. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fast gradient method requiring only one projection is proposed for smooth convex optimization problems. The method has a visual geometric interpretation, so it is called the method of similar triangles (MST). Composite, adaptive, and universal versions of MST are suggested. Based on MST, a universal method is proposed for the first time for strongly convex problems (this method is continuous with respect to the strong convexity parameter of the smooth part of the functional). It is shown how the universal version of MST can be applied to stochastic optimization problems.
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542518010050