Studies on a novel anion‐exchange membrane based on chitosan and ionized organic compounds with multiwalled carbon nanotubes for alkaline fuel cells
ABSTRACT In this work, a novel hydroxyl‐anion‐conducting membrane composed of chitosan (CTS), an ionized organic compound ([QAIM]OH), and hydroxylated multiwalled carbon nanotubes (MWCNTs‐OH) has been fabricated through a blending‐casting method assisted by a glutaraldehyde (GA) crosslinking process...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2018-06, Vol.135 (22), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
In this work, a novel hydroxyl‐anion‐conducting membrane composed of chitosan (CTS), an ionized organic compound ([QAIM]OH), and hydroxylated multiwalled carbon nanotubes (MWCNTs‐OH) has been fabricated through a blending‐casting method assisted by a glutaraldehyde (GA) crosslinking process that can improve the mechanical properties of the membrane effectively. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy revealed that [QAIM]OH and MWCNTs‐OH were successfully introduced into the CTS matrix. A chemical crosslinking reaction between CTS and GA could be confirmed by FTIR, X‐ray photoelectron spectroscopy, and contact angle tests. By tuning the mass fraction of [QAIM]OH and MWCNTs‐OH in the membrane, the maximum OH− conductivity (5.66 × 10−3 S cm−1 at room temperature) could be achieved for the composition CTS:[QAIM]OH (1:0.75 in mass) blend doped with 3% MWCNTs‐OH. At a current density of 59.9 mA cm−2, a membrane electrode assembly fabricated with the CTS/[QAIM]OH/ MWCNTs‐OH membrane (1:0.5/3%) achieved a power density of 31.6 mW cm−2 in a H2/O2 system at room temperature. Under the condition of intermediate temperature (100–140 °C) without water, the conductivities of the membranes increased with increasing temperature and the amount of [QAIM]OH, which acted as an ionic liquid in the membrane, indicating that the ionic transport behaviors could still be occurring. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46323. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.46323 |