Transience and Recurrence of Random Walks on Percolation Clusters in an Ultrametric Space

We study transience and recurrence of simple random walks on percolation clusters in the hierarchical group of order N , which is an ultrametric space. The connection probability on the hierarchical group for two points separated by distance k is of the form c k / N k ( 1 + δ ) , δ > 0 , with c k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2018-03, Vol.31 (1), p.494-526
Hauptverfasser: Dawson, D. A., Gorostiza, L. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study transience and recurrence of simple random walks on percolation clusters in the hierarchical group of order N , which is an ultrametric space. The connection probability on the hierarchical group for two points separated by distance k is of the form c k / N k ( 1 + δ ) , δ > 0 , with c k = C 0 + C 1 log k + C 2 k α , non-negative constants C 0 , C 1 , C 2 , and α > 0 . Percolation occurs for δ < 1 , and for the critical case, δ = 1 , α > 0 and sufficiently large C 2 . We show that in the case δ < 1 the walk is transient, and in the case δ = 1 , C 2 > 0 , α > 0 there exists a critical α c ∈ ( 0 , ∞ ) such that the walk is recurrent for α < α c and transient for α > α c . The proofs involve ultrametric random graphs, graph diameters, path lengths, and electric circuit theory. Some comparisons are made with behaviours of simple random walks on long-range percolation clusters in the one-dimensional Euclidean lattice.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-016-0691-7