Convergence of Weak Kähler–Ricci Flows on Minimal Models of Positive Kodaira Dimension
Studying the behavior of the Kähler–Ricci flow on mildly singular varieties, one is naturally lead to study weak solutions of degenerate parabolic complex Monge–Ampère equations. In this article, the third of a series on this subject, we study the long term behavior of the normalized Kähler–Ricci fl...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2018-02, Vol.357 (3), p.1179-1214 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Studying the behavior of the Kähler–Ricci flow on mildly singular varieties, one is naturally lead to study weak solutions of degenerate parabolic complex Monge–Ampère equations.
In this article, the third of a series on this subject, we study the long term behavior of the normalized Kähler–Ricci flow on mildly singular varieties of positive Kodaira dimension, generalizing results of Song and Tian who dealt with smooth minimal models. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-018-3087-y |