Convergence of Weak Kähler–Ricci Flows on Minimal Models of Positive Kodaira Dimension

Studying the behavior of the Kähler–Ricci flow on mildly singular varieties, one is naturally lead to study weak solutions of degenerate parabolic complex Monge–Ampère equations. In this article, the third of a series on this subject, we study the long term behavior of the normalized Kähler–Ricci fl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2018-02, Vol.357 (3), p.1179-1214
Hauptverfasser: Eyssidieux, Phylippe, Guedj, Vincent, Zeriahi, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studying the behavior of the Kähler–Ricci flow on mildly singular varieties, one is naturally lead to study weak solutions of degenerate parabolic complex Monge–Ampère equations. In this article, the third of a series on this subject, we study the long term behavior of the normalized Kähler–Ricci flow on mildly singular varieties of positive Kodaira dimension, generalizing results of Song and Tian who dealt with smooth minimal models.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-018-3087-y