Mg‐rich harzburgites from Vesta: Mantle residua or cumulates from planetary differentiation?
We describe petrographic, electron microprobe, and laser ablation ICP‐MS analyses of Mg‐rich harzburgite clasts in the Dominion Range 2010 howardites, and conclude that they are xenolithic samples of the vestan mantle. Key chemical and petrologic characteristics of these rocks provide tests for diff...
Gespeichert in:
Veröffentlicht in: | Meteoritics & planetary science 2018-03, Vol.53 (3), p.514-546 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe petrographic, electron microprobe, and laser ablation ICP‐MS analyses of Mg‐rich harzburgite clasts in the Dominion Range 2010 howardites, and conclude that they are xenolithic samples of the vestan mantle. Key chemical and petrologic characteristics of these rocks provide tests for differentiation models. Our results indicate the mantle of Vesta formed through variable degrees of partial melting, which left behind a harzburgite and possibly dunite residuum. The Mg‐rich clasts are composed of orthopyroxene and olivine, with minor clinopyroxene, FeNi metal, and distinctive pyroxene–chromite symplectites. We use mineral chemistry to demonstrate the absence of a genetic link between diogenites and the Mg‐rich harzburgites. We propose a secondary origin for the formation of symplectites: interaction of silicate and metallic melts during primordial differentiation and core formation. The occurrence of FeNi metal containing ~1.5 wt% Cr within the assemblage indicates a very reducing environment during mantle differentiation (≪IW). Our study suggests that Vesta did not experience complete melting early in its history, and instead supports the formation of a shallow magma ocean. |
---|---|
ISSN: | 1086-9379 1945-5100 |
DOI: | 10.1111/maps.13036 |