Bayesian Nonparametrics for Stochastic Epidemic Models

The vast majority of models for the spread of communicable diseases are parametric in nature and involve underlying assumptions about how the disease spreads through a population. In this article, we consider the use of Bayesian nonparametric approaches to analysing data from disease outbreaks. Spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical science 2018-02, Vol.33 (1), p.44-56
Hauptverfasser: Kypraios, Theodore, O'Neill, Philip D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The vast majority of models for the spread of communicable diseases are parametric in nature and involve underlying assumptions about how the disease spreads through a population. In this article, we consider the use of Bayesian nonparametric approaches to analysing data from disease outbreaks. Specifically we focus on methods for estimating the infection process in simple models under the assumption that this process has an explicit time-dependence.
ISSN:0883-4237
2168-8745
DOI:10.1214/17-STS617