Theranostic nanoplatform based on polypyrrole nanoparticles for photoacoustic imaging and photothermal therapy
Development of effective theranostic nanoplatforms against malignant tumor is still a challenge. With desirable near-infrared (NIR) light-responsive properties, polypyrrole nanoparticles (PPy NPs) are one of the promising theranostic candidates for cancer photoacoustic imaging and photothermal thera...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2018-03, Vol.20 (3), p.1-11, Article 57 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Development of effective theranostic nanoplatforms against malignant tumor is still a challenge. With desirable near-infrared (NIR) light-responsive properties, polypyrrole nanoparticles (PPy NPs) are one of the promising theranostic candidates for cancer photoacoustic imaging and photothermal therapy. Here, PPy NPs with distinct sizes were prepared using a facile aqueous dispersion polymerization method. The formed PPy NPs are uniform in size with narrow size distribution. Characterization data show that PPy NPs with a diameter around 50 nm (P50) display stronger absorption in the NIR range compared to 40 and 60 nm PPy NPs, which further influences their photo-responsive properties. Due to their higher NIR absorption, P50 NPs have better photoacoustic imaging property and photothermal conversion ability than the other two kinds of PPy NPs. The photothermal stability of P50 NPs was proved to be excellent. The CCK-8 assays show that PPy NPs have obvious acute cytotoxicity within 6 h and desirable cytocompatibility for longer incubation time (12 and 24 h). After 6-h incubation, P50 NPs could be internalized by HeLa cells. Their photothermal tumor ablation effect was demonstrated under 808-nm laser irradiation. These findings may provide in-depth understanding of the PPy-based multifunctional nanomaterials for the development of theranostic systems against cancer. |
---|---|
ISSN: | 1388-0764 1572-896X |
DOI: | 10.1007/s11051-018-4157-y |