A Fourth-Order Accurate Difference Scheme for a Differential Equation with Variable Coefficients

A compact difference scheme on a three-point stencil for an unknown function is proposed. The scheme approximates a second-order linear differential equation with a variable smooth coefficient. Our numerical experiment confirms the fourth order of accuracy of the solution of the difference scheme an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical models and computer simulations 2018, Vol.10 (1), p.79-88
Hauptverfasser: Gordin, V. A., Tsymbalov, E. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A compact difference scheme on a three-point stencil for an unknown function is proposed. The scheme approximates a second-order linear differential equation with a variable smooth coefficient. Our numerical experiment confirms the fourth order of accuracy of the solution of the difference scheme and of the approximation of the eigenvalues of the boundary problem. The difference operator is almost self-adjoint and its spectrum is real. Richardson extrapolation helps to increase the order of accuracy.
ISSN:2070-0482
2070-0490
DOI:10.1134/S2070048218010064