Smoothing using fractional polynomials: an alternative to polynomials and splines in applied research

The fractional polynomial regression model is an emerging tool in applied research. Overcoming inherent problems associated with a polynomial expansion and splines, fractional polynomial models provide an alternate approach for modeling nonlinear relationships. In this article, we introduce the univ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Computational statistics 2015-07, Vol.7 (4), p.275-283
Hauptverfasser: Regier, Michael David, Parker, R. David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fractional polynomial regression model is an emerging tool in applied research. Overcoming inherent problems associated with a polynomial expansion and splines, fractional polynomial models provide an alternate approach for modeling nonlinear relationships. In this article, we introduce the univariable and multivariable fractional polynomial model and highlight important aspects of their construction. Because of the curvilinear nature of fractional polynomial models, functional tables and functional plots are emphasized for model interpretation. We present two examples to illustrate fractional polynomial models for their selection and interpretation in applied research. WIREs Comput Stat 2015, 7:275–283. doi: 10.1002/wics.1355 This article is categorized under: Statistical and Graphical Methods of Data Analysis > Density Estimation Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods Statistical and Graphical Methods of Data Analysis > Transformations
ISSN:1939-5108
1939-0068
DOI:10.1002/wics.1355