The ZD-GARCH model: A new way to study heteroscedasticity

This paper proposes a first-order zero-drift GARCH (ZD-GARCH(1, 1)) model to study conditional heteroscedasticity and heteroscedasticity together. Unlike the classical GARCH model, the ZD-GARCH(1, 1) model is always non-stationary regardless of the sign of the Lyapunov exponent γ0, but interestingly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2018-01, Vol.202 (1), p.1-17
Hauptverfasser: Li, Dong, Zhang, Xingfa, Zhu, Ke, Ling, Shiqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a first-order zero-drift GARCH (ZD-GARCH(1, 1)) model to study conditional heteroscedasticity and heteroscedasticity together. Unlike the classical GARCH model, the ZD-GARCH(1, 1) model is always non-stationary regardless of the sign of the Lyapunov exponent γ0, but interestingly it is stable with its sample path oscillating randomly between zero and infinity over time when γ0=0. Furthermore, this paper studies the generalized quasi-maximum likelihood estimator (GQMLE) of the ZD-GARCH(1, 1) model, and establishes its strong consistency and asymptotic normality. Based on the GQMLE, an estimator for γ0, a t-test for stability, a unit root test for the absence of the drift term, and a portmanteau test for model checking are all constructed. Simulation studies are carried out to assess the finite sample performance of the proposed estimators and tests. Applications demonstrate that a stable ZD-GARCH(1, 1) model is more appropriate than a non-stationary GARCH(1, 1) model in fitting the KV-A stock returns in Francq and Zakoïan (2012).
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2017.09.003