The ZD-GARCH model: A new way to study heteroscedasticity
This paper proposes a first-order zero-drift GARCH (ZD-GARCH(1, 1)) model to study conditional heteroscedasticity and heteroscedasticity together. Unlike the classical GARCH model, the ZD-GARCH(1, 1) model is always non-stationary regardless of the sign of the Lyapunov exponent γ0, but interestingly...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2018-01, Vol.202 (1), p.1-17 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a first-order zero-drift GARCH (ZD-GARCH(1, 1)) model to study conditional heteroscedasticity and heteroscedasticity together. Unlike the classical GARCH model, the ZD-GARCH(1, 1) model is always non-stationary regardless of the sign of the Lyapunov exponent γ0, but interestingly it is stable with its sample path oscillating randomly between zero and infinity over time when γ0=0. Furthermore, this paper studies the generalized quasi-maximum likelihood estimator (GQMLE) of the ZD-GARCH(1, 1) model, and establishes its strong consistency and asymptotic normality. Based on the GQMLE, an estimator for γ0, a t-test for stability, a unit root test for the absence of the drift term, and a portmanteau test for model checking are all constructed. Simulation studies are carried out to assess the finite sample performance of the proposed estimators and tests. Applications demonstrate that a stable ZD-GARCH(1, 1) model is more appropriate than a non-stationary GARCH(1, 1) model in fitting the KV-A stock returns in Francq and Zakoïan (2012). |
---|---|
ISSN: | 0304-4076 1872-6895 |
DOI: | 10.1016/j.jeconom.2017.09.003 |