Space Weather Parameters: Modeling and Prediction from the Data of Groundbased Observations of Solar Activity

We consider the prospects for developing a forecast system for space weather (SPW) parameters with the use of home facilities for groundbased observations of solar activity. The space weather forecast can be conventionally divided into three components: (i) the prediction of recurrent, slowly changi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geomagnetism and Aeronomy 2017-12, Vol.57 (7), p.854-858
Hauptverfasser: Tlatov, A. G., Shramko, A. D., Chernov, Ya. O., Strelkov, M. A., Naga Varun, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the prospects for developing a forecast system for space weather (SPW) parameters with the use of home facilities for groundbased observations of solar activity. The space weather forecast can be conventionally divided into three components: (i) the prediction of recurrent, slowly changing events connected with the topology of the large-scale magnetic field, (ii) the estimation of fluxes of UV and high-energy radiation, and (iii) the observation of high-speed phenomena, such as solar flares and eruption processes, and the prediction of their consequences at the the Earth’s orbit. At present, to predict recurrent events, data from regular observations of the large-scale field of the Sun by the solar telescope–magnetographs for operative (realtime) prediction (STOP) are effectively used. To estimate high-energy fluxes, to register eruption events, and to estimate their geoefficiency, data from the patrol optical telescope–spectrographs may be used. Patrol telescopes operate in automatic mode and register the processes with an interval of approximately one minute. To detect eruption processes, we propose a method based on the difference between the intensity values in the wings of chromospheric spectral lines. The results of the use of the observational complex of the Kislovodsk Mountain Astronomical Station for the SW forecast are considered in the paper.
ISSN:0016-7932
1555-645X
0016-7940
DOI:10.1134/S0016793217070210