A descent algorithm for generalized complementarity problems based on generalized Fischer-Burmeister functions

We study an unconstrained minimization approach to the generalized complementarity problem GCP( f ,  g ) based on the generalized Fischer-Burmeister function and its generalizations when the underlying functions are C 1 . Also, we show how, under appropriate regularity conditions, minimizing the mer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computation and applied mathematics 2018-03, Vol.37 (1), p.1-26
Hauptverfasser: Tawhid, Mohamed A., Gu, Wei-Zhe, Tran, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study an unconstrained minimization approach to the generalized complementarity problem GCP( f ,  g ) based on the generalized Fischer-Burmeister function and its generalizations when the underlying functions are C 1 . Also, we show how, under appropriate regularity conditions, minimizing the merit function corresponding to f and g leads to a solution of the generalized complementarity problem. Moreover, we propose a descent algorithm for GCP( f ,  g ) and show a result on the global convergence of a descent algorithm for solving generalized complementarity problem. Finally, we present some preliminary numerical results. Our results further give a unified/generalization treatment of such results for the nonlinear complementarity problem based on generalized Fischer-Burmeister function and its generalizations.
ISSN:0101-8205
2238-3603
1807-0302
DOI:10.1007/s40314-016-0328-6