A descent algorithm for generalized complementarity problems based on generalized Fischer-Burmeister functions
We study an unconstrained minimization approach to the generalized complementarity problem GCP( f , g ) based on the generalized Fischer-Burmeister function and its generalizations when the underlying functions are C 1 . Also, we show how, under appropriate regularity conditions, minimizing the mer...
Gespeichert in:
Veröffentlicht in: | Computation and applied mathematics 2018-03, Vol.37 (1), p.1-26 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study an unconstrained minimization approach to the generalized complementarity problem GCP(
f
,
g
) based on the generalized Fischer-Burmeister function and its generalizations when the underlying functions are
C
1
. Also, we show how, under appropriate regularity conditions, minimizing the merit function corresponding to
f
and
g
leads to a solution of the generalized complementarity problem. Moreover, we propose a descent algorithm for GCP(
f
,
g
) and show a result on the global convergence of a descent algorithm for solving generalized complementarity problem. Finally, we present some preliminary numerical results. Our results further give a unified/generalization treatment of such results for the nonlinear complementarity problem based on generalized Fischer-Burmeister function and its generalizations. |
---|---|
ISSN: | 0101-8205 2238-3603 1807-0302 |
DOI: | 10.1007/s40314-016-0328-6 |