Logarithmic coefficients and a coefficient conjecture for univalent functions
Let U ( λ ) denote the family of analytic functions f ( z ), f ( 0 ) = 0 = f ′ ( 0 ) - 1 , in the unit disk D , which satisfy the condition | ( z / f ( z ) ) 2 f ′ ( z ) - 1 | < λ for some 0 < λ ≤ 1 . The logarithmic coefficients γ n of f are defined by the formula log ( f ( z ) / z ) = 2 ∑ n...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2018-03, Vol.185 (3), p.489-501 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
U
(
λ
)
denote the family of analytic functions
f
(
z
),
f
(
0
)
=
0
=
f
′
(
0
)
-
1
, in the unit disk
D
, which satisfy the condition
|
(
z
/
f
(
z
)
)
2
f
′
(
z
)
-
1
|
<
λ
for some
0
<
λ
≤
1
. The logarithmic coefficients
γ
n
of
f
are defined by the formula
log
(
f
(
z
)
/
z
)
=
2
∑
n
=
1
∞
γ
n
z
n
. In a recent paper, the present authors proposed a conjecture that if
f
∈
U
(
λ
)
for some
0
<
λ
≤
1
, then
|
a
n
|
≤
∑
k
=
0
n
-
1
λ
k
for
n
≥
2
and provided a new proof for the case
n
=
2
. One of the aims of this article is to present a proof of this conjecture for
n
=
3
,
4
and an elegant proof of the inequality for
n
=
2
, with equality for
f
(
z
)
=
z
/
[
(
1
+
z
)
(
1
+
λ
z
)
]
. In addition, the authors prove the following sharp inequality for
f
∈
U
(
λ
)
:
∑
n
=
1
∞
|
γ
n
|
2
≤
1
4
π
2
6
+
2
Li
2
(
λ
)
+
Li
2
(
λ
2
)
,
where
Li
2
denotes the dilogarithm function. Furthermore, the authors prove two such new inequalities satisfied by the corresponding logarithmic coefficients of some other subfamilies of
S
. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-017-1024-3 |