ON THE DISTRIBUTION OF ZEROS OF THE DERIVATIVE OF SELBERG’S ZETA FUNCTION ASSOCIATED TO FINITE VOLUME RIEMANN SURFACES

We study the distribution of zeros of the derivative of the Selberg zeta function associated to a noncompact, finite volume hyperbolic Riemann surface $M$ . Actually, we study the zeros of $(Z_{M}H_{M})^{\prime }$ , where $Z_{M}$ is the Selberg zeta function and $H_{M}$ is the Dirichlet series compo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nagoya mathematical journal 2017-12, Vol.228, p.21-71
Hauptverfasser: JORGENSON, JAY, SMAJLOVIĆ, LEJLA
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the distribution of zeros of the derivative of the Selberg zeta function associated to a noncompact, finite volume hyperbolic Riemann surface $M$ . Actually, we study the zeros of $(Z_{M}H_{M})^{\prime }$ , where $Z_{M}$ is the Selberg zeta function and $H_{M}$ is the Dirichlet series component of the scattering matrix, both associated to an arbitrary finite volume hyperbolic Riemann surface $M$ . Our main results address finiteness of number of zeros of $(Z_{M}H_{M})^{\prime }$ in the half-plane $\operatorname{Re}(s)
ISSN:0027-7630
2152-6842
DOI:10.1017/nmj.2016.52