Temperature-dependent Photoconductance and Optical Properties of In^sub 2^O^sub 3^ Thin Films Prepared by Autowave Oxidation

The influences of ultraviolet (UV) irradiation and temperature on the electrical and optical properties in In2O3 films obtained by autowave oxidation were measured experimentally. The film resistance changed slightly for temperatures from 300 to 95 K, and more noticeably when the temperature was fur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Siberian Federal University. Mathematics & Physics 2017-10, Vol.10 (4), p.399-409
Hauptverfasser: Tambasov, Igor A, Maygkov, Victor G, Ivanenko, Alexander A, Volochaev, Mikhail N, Voronin, Anton S, Ivanchenko, Fedor S, Tambasova, Ekaterina V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The influences of ultraviolet (UV) irradiation and temperature on the electrical and optical properties in In2O3 films obtained by autowave oxidation were measured experimentally. The film resistance changed slightly for temperatures from 300 to 95 K, and more noticeably when the temperature was further decreased, measured in the dark. Under UV irradiation, the resistivity of the films at room temperature decreased sharply by ~25% and from 300 to 95 K, and continued to decrease by ~38% with a further decreasing temperature. When the UV source was turned off, the resistivity relaxed at a rate of 15 Ω/s for the first 30 seconds and 7 Ω/s for the remaining time. The transmittance decreased by 3.1% at a wavelength of 6.3 µm after the irradiation ceased. The velocity of the relaxation transmittance was 0.006 %/s. The relaxation of the electrical resistance and transmittance after UV irradiation termination were similar. It was assumed that the dominant mechanism responsible for the change in the conductivity in the indium oxide films during UV irradiation was photoreduction.
ISSN:1997-1397
2313-6022
DOI:10.17516/1997-1397-2017-10-4-399-409