Cell formation using multiple process plans
Cell formation (CF) consists of identifying machine groups and part families. Many CF procedures use a part machine matrix as an input and attempt to obtain a block diagonal form. But perfect block diagonalization of parts and machines is not possible is many cases. In this paper we consider a gener...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent manufacturing 2005-02, Vol.16 (1), p.53-65 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cell formation (CF) consists of identifying machine groups and part families. Many CF procedures use a part machine matrix as an input and attempt to obtain a block diagonal form. But perfect block diagonalization of parts and machines is not possible is many cases. In this paper we consider a generalized cellular manufacturing (CM) problem, in which each part can have alternate process plans and each operation can be performed on alternate machines. Under these conditions the CF problem of assigning parts and machines to each manufacturing cell can be considered as a two stage process. The first stage deals with the problem of determining a unique process plan for each part. The second stage determines the part families and machine cells. In this research a model for forming part families and machine cells is presented considering alternate process plans. The objective is to analyze how alternate process plans influence and enhance the CM process giving better flexibility to the designer while designing cells for CM. |
---|---|
ISSN: | 0956-5515 1572-8145 |
DOI: | 10.1007/s10845-005-4824-6 |