Scaling one- and multi-dimensional co-current spontaneous imbibition processes in fractured reservoirs
Spontaneous Imbibition (SI) is in particular a very important mechanism for oil and gas recovery from matrix blocks in naturally fractured reservoirs. An analytical solution to the one-dimensional co-current spontaneous imbibition (COCSI) problem was proposed by Schmid et al. (2011). On the basis of...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2017-05, Vol.196, p.458-472 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spontaneous Imbibition (SI) is in particular a very important mechanism for oil and gas recovery from matrix blocks in naturally fractured reservoirs. An analytical solution to the one-dimensional co-current spontaneous imbibition (COCSI) problem was proposed by Schmid et al. (2011). On the basis of this analytical solution, a set of scaling equations as well as a simplified one were developed for the COCSI process (Mirzaei-Paiaman and Masihi, 2014). The objective of this study was to validate these scaling equations using 12 one-dimensional COCSI experiments. To accommodate for multi-dimensionality of the COCSI process, a shape factor was proposed and incorporated into the one-dimensional scaling equations to make them applicable for any matrix size, shape and boundary conditions. The resulted scaling equations were validated through the use of data associated with 17 multi-dimensional water-oil COCSI experiments. The necessity of accounting for matrix anisotropy in the proposed scaling equations was also investigated. |
---|---|
ISSN: | 0016-2361 1873-7153 |
DOI: | 10.1016/j.fuel.2017.01.120 |