Emergency-Prioritized Asymmetric Protocol for Improving QoS of Energy-Constraint Wearable Device in Wireless Body Area Networks
Wireless Body Area Network (WBAN) is usually composed of nodes for contacting the body and coordinator for collecting the body data from the nodes. In this setup, the nodes are under constraint of the energy resource while the coordinator can be recharged and has relatively larger energy resource th...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2018-01, Vol.8 (1), p.92 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wireless Body Area Network (WBAN) is usually composed of nodes for contacting the body and coordinator for collecting the body data from the nodes. In this setup, the nodes are under constraint of the energy resource while the coordinator can be recharged and has relatively larger energy resource than the nodes. Therefore, the architecture mechanism of the networks must not allow the nodes to consume much energy. Primarily, Medium Access Control (MAC) protocols should be carefully designed to consider this issue, because the MAC layer has the key of the energy efficiency phenomenon (e.g., idle listening). Under these characteristics, we propose a new MAC protocol to satisfy the higher energy efficiency of nodes than coordinator by designing the asymmetrically energy-balanced model between nodes and coordinator. The proposed scheme loads the unavoidable energy consumption into the coordinator instead of the nodes to extend their lifetime. Additionally, the scheme also provides prioritization for the emergency data transmission with differentiated Quality of Service (QoS). For the evaluations, IEEE 802.15.6 was used for comparison. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app8010092 |