A System Analysis on Steppe Sustainability and Its Driving Forces—A Case Study in China

Steppe is an indispensable component for terrestrial ecosystems and it is of great significance to systematically analyze steppe sustainability and its driving forces. In this study, we propose a steppe dynamics ranking method based on Pauta criterion and a steppe sustainability assessment method wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2018-01, Vol.10 (1), p.233
Hauptverfasser: Zhao, Xiangwei, Gao, Qian, Yue, Yaojie, Duan, Lian, Pan, Shun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Steppe is an indispensable component for terrestrial ecosystems and it is of great significance to systematically analyze steppe sustainability and its driving forces. In this study, we propose a steppe dynamics ranking method based on Pauta criterion and a steppe sustainability assessment method with an effect matrix. The natural driving forces on steppe sustainability were systematically analyzed using the copula model, and the anthropogenic driving factors, including land use, were analyzed by using spatial overlay and statistical analysis methods. The results showed the following: (1) in general, steppe sustainability showed a trend of improvement from 2001 to 2010 in China. However, there were still some degraded areas scattered within the study area; (2) the consistent effect of steppe dynamics on steppe sustainability was significant on the whole, although there was a diverse effect on it; (3) among the natural factors, precipitation was the strongest positive driving force, followed by temperature average, while sunshine duration had strong negative driving force. The impact caused by land use factors was controlled during that decade, and the steppe land that evolved from urban and built-up land, cropland, and forest was vulnerable and resulted in steppe sustainability degradation.
ISSN:2071-1050
2071-1050
DOI:10.3390/su10010233