Historical analysis of interannual rainfall variability and trends in southeastern Brazil based on observational and remotely sensed data

The Brazilian Southeast is considered a humid region. It is also prone to landslides and floods, a result of significant increases in rainfall during spring and summer caused by the South Atlantic Convergence Zone (SACZ). Recently, however, the region has faced a striking rainfall shortage, raising...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2018-02, Vol.50 (3-4), p.801-824
Hauptverfasser: Vásquez P., Isela L., de Araujo, Lígia Maria Nascimento, Molion, Luiz Carlos Baldicero, de Araujo Abdalad, Mariana, Moreira, Daniel Medeiros, Sanchez, Arturo, Barbosa, Humberto Alves, Rotunno Filho, Otto Corrêa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Brazilian Southeast is considered a humid region. It is also prone to landslides and floods, a result of significant increases in rainfall during spring and summer caused by the South Atlantic Convergence Zone (SACZ). Recently, however, the region has faced a striking rainfall shortage, raising serious concerns regarding water availability. The present work endeavored to explain the meteorological drought that has led to hydrological imbalance and water scarcity in the region. Hodrick-Prescott smoothing and wavelet transform techniques were applied to long-term hydrologic and sea surface temperature (SST)—based climate indices monthly time series data in an attempt to detect cycles and trends that could help explain rainfall patterns and define a framework for improving the predictability of extreme events in the region. Historical observational hydrologic datasets available include monthly precipitation amounts gauged since 1888 and 1940 and stream flow measured since the 1930s. The spatial representativeness of rain gauges was tested against gridded rainfall satellite estimates from 2000 to 2015. The analyses revealed variability in four time scale domains—infra-annual, interannual, quasi-decadal and inter-decadal or multi-decadal. The strongest oscillations periods revealed were: for precipitation—8 months, 2, 8 and 32 years; for Pacific SST in the Niño-3.4 region—6 months, 2, 8 and 35.6 years, for North Atlantic SST variability—6 months, 2, 8 and 32 years and for Pacific Decadal Oscillation (PDO) index—6.19 months, 2.04, 8.35 and 27.31 years. Other periodicities less prominent but still statistically significant were also highlighted.
ISSN:0930-7575
1432-0894
DOI:10.1007/s00382-017-3642-9