A Frank–Wolfe based branch-and-bound algorithm for mean-risk optimization
We present an exact algorithm for mean-risk optimization subject to a budget constraint, where decision variables may be continuous or integer. The risk is measured by the covariance matrix and weighted by an arbitrary monotone function, which allows to model risk-aversion in a very individual way....
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2018-03, Vol.70 (3), p.625-644 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an exact algorithm for mean-risk optimization subject to a budget constraint, where decision variables may be continuous or integer. The risk is measured by the covariance matrix and weighted by an arbitrary monotone function, which allows to model risk-aversion in a very individual way. We address this class of convex mixed-integer minimization problems by designing a branch-and-bound algorithm, where at each node, the continuous relaxation is solved by a non-monotone Frank–Wolfe type algorithm with away-steps. Experimental results on portfolio optimization problems show that our approach can outperform the MISOCP solver of CPLEX 12.6 for instances where a linear risk-weighting function is considered. |
---|---|
ISSN: | 0925-5001 1573-2916 |
DOI: | 10.1007/s10898-017-0571-4 |