Discrete Universality in the Selberg Class

The Selberg class S consists of functions L ( s ) that are defined by Dirichlet series and satisfy four axioms (Ramanujan conjecture, analytic continuation, functional equation, and Euler product). It has been known that functions in S that satisfy the mean value condition on primes are universal in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Steklov Institute of Mathematics 2017-11, Vol.299 (1), p.143-156
Hauptverfasser: Laurinčikas, A., Macaitienė, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Selberg class S consists of functions L ( s ) that are defined by Dirichlet series and satisfy four axioms (Ramanujan conjecture, analytic continuation, functional equation, and Euler product). It has been known that functions in S that satisfy the mean value condition on primes are universal in the sense of Voronin, i.e., every function in a sufficiently wide class of analytic functions can be approximated by the shifts L ( s + iτ ), τ ∈ R. In this paper we show that every function in the same class of analytic functions can be approximated by the discrete shifts L ( s + ikh ), k = 0, 1,..., where h > 0 is an arbitrary fixed number.
ISSN:0081-5438
1531-8605
DOI:10.1134/S0081543817080107