Edge‐colorings avoiding rainbow stars

We consider an extremal problem motivated by a article of Balogh [J. Balogh, A remark on the number of edge colorings of graphs, European Journal of Combinatorics 27, 2006, 565–573], who considered edge‐colorings of graphs avoiding fixed subgraphs with a prescribed coloring. More precisely, given r≥...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2018-04, Vol.87 (4), p.399-429
Hauptverfasser: Hoppen, Carlos, Lefmann, Hanno, Odermann, Knut, Sanches, Juliana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider an extremal problem motivated by a article of Balogh [J. Balogh, A remark on the number of edge colorings of graphs, European Journal of Combinatorics 27, 2006, 565–573], who considered edge‐colorings of graphs avoiding fixed subgraphs with a prescribed coloring. More precisely, given r≥t≥2, we look for n‐vertex graphs that admit the maximum number of r‐edge‐colorings such that at most t−1 colors appear in edges incident with each vertex, that is, r‐edge‐colorings avoiding rainbow‐colored stars with t edges. For large n, we show that, with the exception of the case t=2, the complete graph Kn is always the unique extremal graph. We also consider generalizations of this problem.
ISSN:0364-9024
1097-0118
DOI:10.1002/jgt.22165