Edge‐colorings avoiding rainbow stars
We consider an extremal problem motivated by a article of Balogh [J. Balogh, A remark on the number of edge colorings of graphs, European Journal of Combinatorics 27, 2006, 565–573], who considered edge‐colorings of graphs avoiding fixed subgraphs with a prescribed coloring. More precisely, given r≥...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2018-04, Vol.87 (4), p.399-429 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider an extremal problem motivated by a article of Balogh [J. Balogh, A remark on the number of edge colorings of graphs, European Journal of Combinatorics 27, 2006, 565–573], who considered edge‐colorings of graphs avoiding fixed subgraphs with a prescribed coloring. More precisely, given r≥t≥2, we look for n‐vertex graphs that admit the maximum number of r‐edge‐colorings such that at most t−1 colors appear in edges incident with each vertex, that is, r‐edge‐colorings avoiding rainbow‐colored stars with t edges. For large n, we show that, with the exception of the case t=2, the complete graph Kn is always the unique extremal graph. We also consider generalizations of this problem. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22165 |