Freezing Range, Melt Quality, and Hot Tearing in Al-Si Alloys
In this study, three different aluminum-silicon alloys (A356, A413, and A380) that have different solidification morphology and solidification ranges were examined with an aim to evaluate the hot tearing susceptibility. T-shape mold and Constrained Rod Casting (CRC) mold were used for the characteri...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2018-05, Vol.49 (5), p.1948-1961 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, three different aluminum-silicon alloys (A356, A413, and A380) that have different solidification morphology and solidification ranges were examined with an aim to evaluate the hot tearing susceptibility. T-shape mold and Constrained Rod Casting (CRC) mold were used for the characterization. Reduced Pressure Test (RPT) was used to quantify the casting quality by measuring bifilm index. It was found that bifilm index and solidification range have an important role on the hot tearing formation. As it is known, bifilms can cause porosity and in this case, it was shown that porosity formed by bifilms decreased hot tearing tendency. As the freezing range of alloy increases, bifilms find the time to unravel that reduces hot tearing. However, for eutectic alloy (A413), due to zero freezing range, regardless of bifilm content, hot tearing was never observed. A380.1 alloy had the highest tendency for hot tearing due to having the highest freezing range among the alloys investigated in this work. |
---|---|
ISSN: | 1073-5623 1543-1940 |
DOI: | 10.1007/s11661-018-4512-8 |