Applications of nanocomposite hydrogels for biomedical engineering and environmental protection
Nanocomposite hydrogels are polymeric networks that possess a unique property of hydration. The presence of alcohols, carboxylic acids and amides as hydrophilic moieties in structure of nanocomposite hydrogels enhances their stiffness and water-absorbing capacity. Addition of cross-linker in the syn...
Gespeichert in:
Veröffentlicht in: | Environmental chemistry letters 2018-03, Vol.16 (1), p.113-146 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanocomposite hydrogels are polymeric networks that possess a unique property of hydration. The presence of alcohols, carboxylic acids and amides as hydrophilic moieties in structure of nanocomposite hydrogels enhances their stiffness and water-absorbing capacity. Addition of cross-linker in the synthesis of hydrogels increases their stability under extreme conditions of temperature, pH and pressure. Natural polymer-based nanocomposite hydrogels are biodegradable, highly hydrophilic and possess good mechanical strength. Gelatin, chitin, cellulose, pectin, carrageenan, starch and alginate are natural polymers commonly used to fabricate nanocomposite hydrogels. Nanocomposite hydrogels have special characteristics such as high swelling rate, selectivity and stimuli-sensitive nature. Here we review nanocomposite hydrogels for environmental protection and biomedical engineering. Applications in biomedical engineering include drug delivery agents, wound dressing, tissue engineering and antibacterials. Applications in environmental protection include ion exchangers, adsorption, photocatalysis and soil conditioning. Many nanocomposite hydrogels show excellent adsorption selectivity for heavy metal ions: Cu
2+
up to 30.35 mg/g, Pb
2+
up to 35.94 mg/g, and Zn
2+
and Fe
3+
up to 94.34 mg/g. Xanthan gum-based nanocomposite hydrogel has removed 96% dye from industrial effluent as reported. In addition, most of the nanocomposite hydrogels showed better adsorption capacity for pollutants in the pH range from 5 to 7. The nanocomposite hydrogels could also be regenerated and successfully utilized for several times. Nanocomposite hydrogels are therefore good bio-absorbent materials for environmental detoxification. |
---|---|
ISSN: | 1610-3653 1610-3661 |
DOI: | 10.1007/s10311-017-0671-x |