Strong approximation of sets of finite perimeter in metric spaces
In the setting of a metric space equipped with a doubling measure that supports a Poincaré inequality, we show that any set of finite perimeter can be approximated in the BV norm by a set whose topological and measure theoretic boundaries almost coincide. The proof relies on a quasicontinuity-type r...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2018-03, Vol.155 (3-4), p.503-522 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 522 |
---|---|
container_issue | 3-4 |
container_start_page | 503 |
container_title | Manuscripta mathematica |
container_volume | 155 |
creator | Lahti, Panu |
description | In the setting of a metric space equipped with a doubling measure that supports a Poincaré inequality, we show that any set of finite perimeter can be approximated in the
BV
norm by a set whose topological and measure theoretic boundaries almost coincide. The proof relies on a quasicontinuity-type result for
BV
functions proved by Lahti and Shanmugalingam (J Math Pures Appl 107(2): 150–182,
2017
). |
doi_str_mv | 10.1007/s00229-017-0948-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2002003255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002003255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8041a77e1f3649d909523a4203d3f48b0336da21389716788b1a343f4d78c8153</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLguvoDvAU8R2eStEmOy-IXLHhQzyHbpksWt61JFvTfm1LBk6cZeB_z5hFyjXCLAOouAXBuGKBiYKRmeEIWKAVnqHR1ShYFrhivEc_JRUp7gAIqsSCr1xyHfkfdOMbhKxxcDkNPh44mn9M0u9CH7OnoYzj47CMNPS1LDA1No2t8uiRnnftI_up3Lsn7w_3b-oltXh6f16sNa0RlMtMg0SnlsRO1NK0BU3HhJAfRik7qLQhRt46j0EZhrbTeohOyQK3SjcZKLMnN7FuCfh59ynY_HGNfTlpevgMQvJpYOLOaOKQUfWfHEtzFb4tgp6bs3JQtTdmpKYtFw2dNKtx-5-Of8_-iHzvXaTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002003255</pqid></control><display><type>article</type><title>Strong approximation of sets of finite perimeter in metric spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Lahti, Panu</creator><creatorcontrib>Lahti, Panu</creatorcontrib><description>In the setting of a metric space equipped with a doubling measure that supports a Poincaré inequality, we show that any set of finite perimeter can be approximated in the
BV
norm by a set whose topological and measure theoretic boundaries almost coincide. The proof relies on a quasicontinuity-type result for
BV
functions proved by Lahti and Shanmugalingam (J Math Pures Appl 107(2): 150–182,
2017
).</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-017-0948-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Geometry ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Metric space ; Number Theory ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2018-03, Vol.155 (3-4), p.503-522</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8041a77e1f3649d909523a4203d3f48b0336da21389716788b1a343f4d78c8153</citedby><cites>FETCH-LOGICAL-c359t-8041a77e1f3649d909523a4203d3f48b0336da21389716788b1a343f4d78c8153</cites><orcidid>0000-0002-1058-1625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-017-0948-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-017-0948-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lahti, Panu</creatorcontrib><title>Strong approximation of sets of finite perimeter in metric spaces</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>In the setting of a metric space equipped with a doubling measure that supports a Poincaré inequality, we show that any set of finite perimeter can be approximated in the
BV
norm by a set whose topological and measure theoretic boundaries almost coincide. The proof relies on a quasicontinuity-type result for
BV
functions proved by Lahti and Shanmugalingam (J Math Pures Appl 107(2): 150–182,
2017
).</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Number Theory</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaLguvoDvAU8R2eStEmOy-IXLHhQzyHbpksWt61JFvTfm1LBk6cZeB_z5hFyjXCLAOouAXBuGKBiYKRmeEIWKAVnqHR1ShYFrhivEc_JRUp7gAIqsSCr1xyHfkfdOMbhKxxcDkNPh44mn9M0u9CH7OnoYzj47CMNPS1LDA1No2t8uiRnnftI_up3Lsn7w_3b-oltXh6f16sNa0RlMtMg0SnlsRO1NK0BU3HhJAfRik7qLQhRt46j0EZhrbTeohOyQK3SjcZKLMnN7FuCfh59ynY_HGNfTlpevgMQvJpYOLOaOKQUfWfHEtzFb4tgp6bs3JQtTdmpKYtFw2dNKtx-5-Of8_-iHzvXaTI</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Lahti, Panu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1058-1625</orcidid></search><sort><creationdate>20180301</creationdate><title>Strong approximation of sets of finite perimeter in metric spaces</title><author>Lahti, Panu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8041a77e1f3649d909523a4203d3f48b0336da21389716788b1a343f4d78c8153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Number Theory</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lahti, Panu</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lahti, Panu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong approximation of sets of finite perimeter in metric spaces</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>155</volume><issue>3-4</issue><spage>503</spage><epage>522</epage><pages>503-522</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>In the setting of a metric space equipped with a doubling measure that supports a Poincaré inequality, we show that any set of finite perimeter can be approximated in the
BV
norm by a set whose topological and measure theoretic boundaries almost coincide. The proof relies on a quasicontinuity-type result for
BV
functions proved by Lahti and Shanmugalingam (J Math Pures Appl 107(2): 150–182,
2017
).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-017-0948-1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1058-1625</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-2611 |
ispartof | Manuscripta mathematica, 2018-03, Vol.155 (3-4), p.503-522 |
issn | 0025-2611 1432-1785 |
language | eng |
recordid | cdi_proquest_journals_2002003255 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebraic Geometry Calculus of Variations and Optimal Control Optimization Geometry Lie Groups Mathematics Mathematics and Statistics Metric space Number Theory Topological Groups |
title | Strong approximation of sets of finite perimeter in metric spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20approximation%20of%20sets%20of%20finite%20perimeter%20in%20metric%20spaces&rft.jtitle=Manuscripta%20mathematica&rft.au=Lahti,%20Panu&rft.date=2018-03-01&rft.volume=155&rft.issue=3-4&rft.spage=503&rft.epage=522&rft.pages=503-522&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-017-0948-1&rft_dat=%3Cproquest_cross%3E2002003255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002003255&rft_id=info:pmid/&rfr_iscdi=true |