Strong approximation of sets of finite perimeter in metric spaces

In the setting of a metric space equipped with a doubling measure that supports a Poincaré inequality, we show that any set of finite perimeter can be approximated in the BV norm by a set whose topological and measure theoretic boundaries almost coincide. The proof relies on a quasicontinuity-type r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2018-03, Vol.155 (3-4), p.503-522
1. Verfasser: Lahti, Panu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 522
container_issue 3-4
container_start_page 503
container_title Manuscripta mathematica
container_volume 155
creator Lahti, Panu
description In the setting of a metric space equipped with a doubling measure that supports a Poincaré inequality, we show that any set of finite perimeter can be approximated in the BV norm by a set whose topological and measure theoretic boundaries almost coincide. The proof relies on a quasicontinuity-type result for BV functions proved by Lahti and Shanmugalingam (J Math Pures Appl 107(2): 150–182, 2017 ).
doi_str_mv 10.1007/s00229-017-0948-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2002003255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002003255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8041a77e1f3649d909523a4203d3f48b0336da21389716788b1a343f4d78c8153</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaLguvoDvAU8R2eStEmOy-IXLHhQzyHbpksWt61JFvTfm1LBk6cZeB_z5hFyjXCLAOouAXBuGKBiYKRmeEIWKAVnqHR1ShYFrhivEc_JRUp7gAIqsSCr1xyHfkfdOMbhKxxcDkNPh44mn9M0u9CH7OnoYzj47CMNPS1LDA1No2t8uiRnnftI_up3Lsn7w_3b-oltXh6f16sNa0RlMtMg0SnlsRO1NK0BU3HhJAfRik7qLQhRt46j0EZhrbTeohOyQK3SjcZKLMnN7FuCfh59ynY_HGNfTlpevgMQvJpYOLOaOKQUfWfHEtzFb4tgp6bs3JQtTdmpKYtFw2dNKtx-5-Of8_-iHzvXaTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002003255</pqid></control><display><type>article</type><title>Strong approximation of sets of finite perimeter in metric spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Lahti, Panu</creator><creatorcontrib>Lahti, Panu</creatorcontrib><description>In the setting of a metric space equipped with a doubling measure that supports a Poincaré inequality, we show that any set of finite perimeter can be approximated in the BV norm by a set whose topological and measure theoretic boundaries almost coincide. The proof relies on a quasicontinuity-type result for BV functions proved by Lahti and Shanmugalingam (J Math Pures Appl 107(2): 150–182, 2017 ).</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-017-0948-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Geometry ; Lie Groups ; Mathematics ; Mathematics and Statistics ; Metric space ; Number Theory ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2018-03, Vol.155 (3-4), p.503-522</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8041a77e1f3649d909523a4203d3f48b0336da21389716788b1a343f4d78c8153</citedby><cites>FETCH-LOGICAL-c359t-8041a77e1f3649d909523a4203d3f48b0336da21389716788b1a343f4d78c8153</cites><orcidid>0000-0002-1058-1625</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-017-0948-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-017-0948-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lahti, Panu</creatorcontrib><title>Strong approximation of sets of finite perimeter in metric spaces</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>In the setting of a metric space equipped with a doubling measure that supports a Poincaré inequality, we show that any set of finite perimeter can be approximated in the BV norm by a set whose topological and measure theoretic boundaries almost coincide. The proof relies on a quasicontinuity-type result for BV functions proved by Lahti and Shanmugalingam (J Math Pures Appl 107(2): 150–182, 2017 ).</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Number Theory</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaLguvoDvAU8R2eStEmOy-IXLHhQzyHbpksWt61JFvTfm1LBk6cZeB_z5hFyjXCLAOouAXBuGKBiYKRmeEIWKAVnqHR1ShYFrhivEc_JRUp7gAIqsSCr1xyHfkfdOMbhKxxcDkNPh44mn9M0u9CH7OnoYzj47CMNPS1LDA1No2t8uiRnnftI_up3Lsn7w_3b-oltXh6f16sNa0RlMtMg0SnlsRO1NK0BU3HhJAfRik7qLQhRt46j0EZhrbTeohOyQK3SjcZKLMnN7FuCfh59ynY_HGNfTlpevgMQvJpYOLOaOKQUfWfHEtzFb4tgp6bs3JQtTdmpKYtFw2dNKtx-5-Of8_-iHzvXaTI</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Lahti, Panu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1058-1625</orcidid></search><sort><creationdate>20180301</creationdate><title>Strong approximation of sets of finite perimeter in metric spaces</title><author>Lahti, Panu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8041a77e1f3649d909523a4203d3f48b0336da21389716788b1a343f4d78c8153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Number Theory</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lahti, Panu</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lahti, Panu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong approximation of sets of finite perimeter in metric spaces</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>155</volume><issue>3-4</issue><spage>503</spage><epage>522</epage><pages>503-522</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>In the setting of a metric space equipped with a doubling measure that supports a Poincaré inequality, we show that any set of finite perimeter can be approximated in the BV norm by a set whose topological and measure theoretic boundaries almost coincide. The proof relies on a quasicontinuity-type result for BV functions proved by Lahti and Shanmugalingam (J Math Pures Appl 107(2): 150–182, 2017 ).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-017-0948-1</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1058-1625</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-2611
ispartof Manuscripta mathematica, 2018-03, Vol.155 (3-4), p.503-522
issn 0025-2611
1432-1785
language eng
recordid cdi_proquest_journals_2002003255
source Springer Nature - Complete Springer Journals
subjects Algebraic Geometry
Calculus of Variations and Optimal Control
Optimization
Geometry
Lie Groups
Mathematics
Mathematics and Statistics
Metric space
Number Theory
Topological Groups
title Strong approximation of sets of finite perimeter in metric spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20approximation%20of%20sets%20of%20finite%20perimeter%20in%20metric%20spaces&rft.jtitle=Manuscripta%20mathematica&rft.au=Lahti,%20Panu&rft.date=2018-03-01&rft.volume=155&rft.issue=3-4&rft.spage=503&rft.epage=522&rft.pages=503-522&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-017-0948-1&rft_dat=%3Cproquest_cross%3E2002003255%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002003255&rft_id=info:pmid/&rfr_iscdi=true