Strong approximation of sets of finite perimeter in metric spaces
In the setting of a metric space equipped with a doubling measure that supports a Poincaré inequality, we show that any set of finite perimeter can be approximated in the BV norm by a set whose topological and measure theoretic boundaries almost coincide. The proof relies on a quasicontinuity-type r...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2018-03, Vol.155 (3-4), p.503-522 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the setting of a metric space equipped with a doubling measure that supports a Poincaré inequality, we show that any set of finite perimeter can be approximated in the
BV
norm by a set whose topological and measure theoretic boundaries almost coincide. The proof relies on a quasicontinuity-type result for
BV
functions proved by Lahti and Shanmugalingam (J Math Pures Appl 107(2): 150–182,
2017
). |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-017-0948-1 |