Strong approximation of sets of finite perimeter in metric spaces

In the setting of a metric space equipped with a doubling measure that supports a Poincaré inequality, we show that any set of finite perimeter can be approximated in the BV norm by a set whose topological and measure theoretic boundaries almost coincide. The proof relies on a quasicontinuity-type r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2018-03, Vol.155 (3-4), p.503-522
1. Verfasser: Lahti, Panu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the setting of a metric space equipped with a doubling measure that supports a Poincaré inequality, we show that any set of finite perimeter can be approximated in the BV norm by a set whose topological and measure theoretic boundaries almost coincide. The proof relies on a quasicontinuity-type result for BV functions proved by Lahti and Shanmugalingam (J Math Pures Appl 107(2): 150–182, 2017 ).
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-017-0948-1