Orbifold Milnor lattice and orbifold intersection form

For a germ of a quasihomogeneous function with an isolated critical point at the origin invariant with respect to an appropriate action of a finite abelian group, H. Fan, T. Jarvis, and Y. Ruan defined the so-called quantum cohomology group. It is considered as the main object of the quantum singula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2018-03, Vol.155 (3-4), p.335-353
Hauptverfasser: Ebeling, Wolfgang, Gusein-Zade, Sabir M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a germ of a quasihomogeneous function with an isolated critical point at the origin invariant with respect to an appropriate action of a finite abelian group, H. Fan, T. Jarvis, and Y. Ruan defined the so-called quantum cohomology group. It is considered as the main object of the quantum singularity theory (FJRW-theory). We define orbifold versions of the monodromy operator on the quantum (co)homology group, of the Milnor lattice, of the Seifert form and of the intersection form. We also describe some symmetry properties of invariants of invertible polynomials refining the known ones.
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-017-0945-4