Gradient estimates for some f-heat equations driven by Lichnerowicz’s equation on complete smooth metric measure spaces

Given a complete, smooth metric measure space ( M , g , e - f d v ) with the Bakry–Émery Ricci curvature bounded from below, various gradient estimates for solutions of the following general f -heat equations u t = Δ f u + a u log u + b u + A u p + B u - q and u t = Δ f u + A e p u + B e - p u + D a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2018-03, Vol.155 (3-4), p.471-501
Hauptverfasser: Dung, Nguyen Thac, Khanh, Nguyen Ngoc, Ngô, Quốc Anh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 501
container_issue 3-4
container_start_page 471
container_title Manuscripta mathematica
container_volume 155
creator Dung, Nguyen Thac
Khanh, Nguyen Ngoc
Ngô, Quốc Anh
description Given a complete, smooth metric measure space ( M , g , e - f d v ) with the Bakry–Émery Ricci curvature bounded from below, various gradient estimates for solutions of the following general f -heat equations u t = Δ f u + a u log u + b u + A u p + B u - q and u t = Δ f u + A e p u + B e - p u + D are studied. As by-product, we obtain some Liouville-type theorems and Harnack-type inequalities for positive solutions of several nonlinear equations including the Schrödinger equation, the Yamabe equation, and Lichnerowicz-type equations as special cases.
doi_str_mv 10.1007/s00229-017-0946-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2002000293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2002000293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2785ad14324471089b499766142e669d5750b0e8c22487b508ff7536b94c9ba93</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI4-gLuA62iSpk2zlME_GHCj65Cmt06HadNJMsq48jV8PZ_ElIquhIQLOefcm_shdM7oJaNUXgVKOVeEMkmoEgXJDtCMiYwTJsv8EM2SnBNeMHaMTkJYU5pEmc3Q_s6buoU-Ygix7UyEgBvncXAd4IaswCRluzOxdX3AtW9focfVHi9bu-rBu7fWvn99fIZfE07Hum7YQAQcOufiCncQfWtTMWHn0-tgLIRTdNSYTYCznzpHz7c3T4t7sny8e1hcL4nNWBEJT_839biKEJLRUlVCKVkUTHAoClXnMqcVhdJyLkpZ5bRsGplnRaWEVZVR2RxdTH0H77a7tKVeu53v00jNExWarsqSi00u610IHho9-ITD7zWjeiSsJ8I6EdYjYT1m-JQJydu_gP_r_H_oG1Gwf5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002000293</pqid></control><display><type>article</type><title>Gradient estimates for some f-heat equations driven by Lichnerowicz’s equation on complete smooth metric measure spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dung, Nguyen Thac ; Khanh, Nguyen Ngoc ; Ngô, Quốc Anh</creator><creatorcontrib>Dung, Nguyen Thac ; Khanh, Nguyen Ngoc ; Ngô, Quốc Anh</creatorcontrib><description>Given a complete, smooth metric measure space ( M , g , e - f d v ) with the Bakry–Émery Ricci curvature bounded from below, various gradient estimates for solutions of the following general f -heat equations u t = Δ f u + a u log u + b u + A u p + B u - q and u t = Δ f u + A e p u + B e - p u + D are studied. As by-product, we obtain some Liouville-type theorems and Harnack-type inequalities for positive solutions of several nonlinear equations including the Schrödinger equation, the Yamabe equation, and Lichnerowicz-type equations as special cases.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-017-0946-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Calculus of Variations and Optimal Control; Optimization ; Curvature ; Geometry ; Lie Groups ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Number Theory ; Schrodinger equation ; Thermodynamics ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2018-03, Vol.155 (3-4), p.471-501</ispartof><rights>Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2785ad14324471089b499766142e669d5750b0e8c22487b508ff7536b94c9ba93</citedby><cites>FETCH-LOGICAL-c316t-2785ad14324471089b499766142e669d5750b0e8c22487b508ff7536b94c9ba93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-017-0946-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-017-0946-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dung, Nguyen Thac</creatorcontrib><creatorcontrib>Khanh, Nguyen Ngoc</creatorcontrib><creatorcontrib>Ngô, Quốc Anh</creatorcontrib><title>Gradient estimates for some f-heat equations driven by Lichnerowicz’s equation on complete smooth metric measure spaces</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>Given a complete, smooth metric measure space ( M , g , e - f d v ) with the Bakry–Émery Ricci curvature bounded from below, various gradient estimates for solutions of the following general f -heat equations u t = Δ f u + a u log u + b u + A u p + B u - q and u t = Δ f u + A e p u + B e - p u + D are studied. As by-product, we obtain some Liouville-type theorems and Harnack-type inequalities for positive solutions of several nonlinear equations including the Schrödinger equation, the Yamabe equation, and Lichnerowicz-type equations as special cases.</description><subject>Algebraic Geometry</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Curvature</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Number Theory</subject><subject>Schrodinger equation</subject><subject>Thermodynamics</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoOI4-gLuA62iSpk2zlME_GHCj65Cmt06HadNJMsq48jV8PZ_ElIquhIQLOefcm_shdM7oJaNUXgVKOVeEMkmoEgXJDtCMiYwTJsv8EM2SnBNeMHaMTkJYU5pEmc3Q_s6buoU-Ygix7UyEgBvncXAd4IaswCRluzOxdX3AtW9focfVHi9bu-rBu7fWvn99fIZfE07Hum7YQAQcOufiCncQfWtTMWHn0-tgLIRTdNSYTYCznzpHz7c3T4t7sny8e1hcL4nNWBEJT_839biKEJLRUlVCKVkUTHAoClXnMqcVhdJyLkpZ5bRsGplnRaWEVZVR2RxdTH0H77a7tKVeu53v00jNExWarsqSi00u610IHho9-ITD7zWjeiSsJ8I6EdYjYT1m-JQJydu_gP_r_H_oG1Gwf5k</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Dung, Nguyen Thac</creator><creator>Khanh, Nguyen Ngoc</creator><creator>Ngô, Quốc Anh</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180301</creationdate><title>Gradient estimates for some f-heat equations driven by Lichnerowicz’s equation on complete smooth metric measure spaces</title><author>Dung, Nguyen Thac ; Khanh, Nguyen Ngoc ; Ngô, Quốc Anh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2785ad14324471089b499766142e669d5750b0e8c22487b508ff7536b94c9ba93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebraic Geometry</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Curvature</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Number Theory</topic><topic>Schrodinger equation</topic><topic>Thermodynamics</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dung, Nguyen Thac</creatorcontrib><creatorcontrib>Khanh, Nguyen Ngoc</creatorcontrib><creatorcontrib>Ngô, Quốc Anh</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dung, Nguyen Thac</au><au>Khanh, Nguyen Ngoc</au><au>Ngô, Quốc Anh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient estimates for some f-heat equations driven by Lichnerowicz’s equation on complete smooth metric measure spaces</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>155</volume><issue>3-4</issue><spage>471</spage><epage>501</epage><pages>471-501</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>Given a complete, smooth metric measure space ( M , g , e - f d v ) with the Bakry–Émery Ricci curvature bounded from below, various gradient estimates for solutions of the following general f -heat equations u t = Δ f u + a u log u + b u + A u p + B u - q and u t = Δ f u + A e p u + B e - p u + D are studied. As by-product, we obtain some Liouville-type theorems and Harnack-type inequalities for positive solutions of several nonlinear equations including the Schrödinger equation, the Yamabe equation, and Lichnerowicz-type equations as special cases.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-017-0946-3</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-2611
ispartof Manuscripta mathematica, 2018-03, Vol.155 (3-4), p.471-501
issn 0025-2611
1432-1785
language eng
recordid cdi_proquest_journals_2002000293
source SpringerLink Journals - AutoHoldings
subjects Algebraic Geometry
Calculus of Variations and Optimal Control
Optimization
Curvature
Geometry
Lie Groups
Mathematical analysis
Mathematics
Mathematics and Statistics
Nonlinear equations
Number Theory
Schrodinger equation
Thermodynamics
Topological Groups
title Gradient estimates for some f-heat equations driven by Lichnerowicz’s equation on complete smooth metric measure spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20estimates%20for%20some%20f-heat%20equations%20driven%20by%20Lichnerowicz%E2%80%99s%20equation%20on%20complete%20smooth%20metric%20measure%20spaces&rft.jtitle=Manuscripta%20mathematica&rft.au=Dung,%20Nguyen%20Thac&rft.date=2018-03-01&rft.volume=155&rft.issue=3-4&rft.spage=471&rft.epage=501&rft.pages=471-501&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-017-0946-3&rft_dat=%3Cproquest_cross%3E2002000293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002000293&rft_id=info:pmid/&rfr_iscdi=true