Gradient estimates for some f-heat equations driven by Lichnerowicz’s equation on complete smooth metric measure spaces
Given a complete, smooth metric measure space ( M , g , e - f d v ) with the Bakry–Émery Ricci curvature bounded from below, various gradient estimates for solutions of the following general f -heat equations u t = Δ f u + a u log u + b u + A u p + B u - q and u t = Δ f u + A e p u + B e - p u + D a...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2018-03, Vol.155 (3-4), p.471-501 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a complete, smooth metric measure space
(
M
,
g
,
e
-
f
d
v
)
with the Bakry–Émery Ricci curvature bounded from below, various gradient estimates for solutions of the following general
f
-heat equations
u
t
=
Δ
f
u
+
a
u
log
u
+
b
u
+
A
u
p
+
B
u
-
q
and
u
t
=
Δ
f
u
+
A
e
p
u
+
B
e
-
p
u
+
D
are studied. As by-product, we obtain some Liouville-type theorems and Harnack-type inequalities for positive solutions of several nonlinear equations including the Schrödinger equation, the Yamabe equation, and Lichnerowicz-type equations as special cases. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-017-0946-3 |