Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis

The effect of a sodium glucose cotransporter 2 inhibitor (SGLT2i) in reducing heart failure hospitalization in the EMPA‐REG OUTCOMES trial has raised the possibility of using these agents to treat established heart failure. We hypothesize that osmotic diuresis induced by SGLT2 inhibition, a distinct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes, obesity & metabolism obesity & metabolism, 2018-03, Vol.20 (3), p.479-487
Hauptverfasser: Hallow, Karen M., Helmlinger, Gabriel, Greasley, Peter J., McMurray, John J. V., Boulton, David W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of a sodium glucose cotransporter 2 inhibitor (SGLT2i) in reducing heart failure hospitalization in the EMPA‐REG OUTCOMES trial has raised the possibility of using these agents to treat established heart failure. We hypothesize that osmotic diuresis induced by SGLT2 inhibition, a distinctly different diuretic mechanism than that of other diuretic classes, results in greater electrolyte‐free water clearance and, ultimately, in greater fluid clearance from the interstitial fluid (IF) space than from the circulation, potentially resulting in congestion relief with minimal impact on blood volume, arterial filling and organ perfusion. We utilize a mathematical model to illustrate that electrolyte‐free water clearance results in a greater reduction in IF volume compared to blood volume, and that this difference may be mediated by peripheral sequestration of osmotically inactive sodium. By coupling the model with data on plasma and urinary sodium and water in healthy subjects who received either the SGLT2i dapagliflozin or loop diuretic bumetanide, we predict that dapagliflozin produces a 2‐fold greater reduction in IF volume compared to blood volume, while the reduction in IF volume with bumetanide is only 78% of the reduction in blood volume. Heart failure is characterized by excess fluid accumulation, in both the vascular compartment and interstitial space, yet many heart failure patients have arterial underfilling because of low cardiac output, which may be aggravated by conventional diuretic treatment. Thus, we hypothesize that, by reducing IF volume to a greater extent than blood volume, SGLT2 inhibitors might provide better control of congestion without reducing arterial filling and perfusion.
ISSN:1462-8902
1463-1326
DOI:10.1111/dom.13126