Energy-driven surface evolution in beta-MnO2 structures

Exposed crystal facets directly affect the electrochemical/catalytic performance of MnO2 materials during their applications in supercapacitors, rechargeable batteries, and fuel cells. Currently, the facet-controlled synthesis of MnO2 is facing serious challenges due to the lack of an in-depth under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2018, Vol.11 (1), p.206-215
Hauptverfasser: Yao, Wentao, Yuan, Yifei, Asayesh-Ardakani, Hasti, Huang, Zhennan, Long, Fei, Friedrich, Craig R., Amine, Khalil, Lu, Jun, Shahbazian-Yassar, Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exposed crystal facets directly affect the electrochemical/catalytic performance of MnO2 materials during their applications in supercapacitors, rechargeable batteries, and fuel cells. Currently, the facet-controlled synthesis of MnO2 is facing serious challenges due to the lack of an in-depth understanding of their surface evolution mechanisms. Here, combining aberration-corrected scanning transmission electron microscopy (STEM) and high-resolution TEM, we revealed a mutual energy-driven mechanism between beta-MnO2 nanowires and microstructures that dominated the evolution of the lateral facets in both structures. The evolution of the lateral surfaces followed the elimination of the {100} facets and increased the occupancy of {110} facets with the increase in hydrothermal retention time. Both self-growth and oriented attachment along their {100} facets were observed as two different ways to reduce the surface energies of the beta-MnO2 structures. High-density screw dislocations with the 1/2〈100〉 Burgers vector were generated consequently. The observed surface evolution phenomenon offers guidance for the facet-controlled growth of beta- MnO2 materials with high performances for its application in metal-air batteries, fuel cells, supercapacitors, etc.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-017-1620-5