Synthesis of large-scale atomic-layer SnS2 through chemical vapor deposition
Two-dimensional layers of metal dichalcogenides have attracted much attention because of their ultrathin thickness and potential applications in electronics and optoelectronics. Monolayer SnS2, with a band gap of -2.6 eV, has an octahedral lattice made of two atomic layers of sulfur and one atomic l...
Gespeichert in:
Veröffentlicht in: | Nano research 2017-07, Vol.10 (7), p.2386-2394 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two-dimensional layers of metal dichalcogenides have attracted much attention because of their ultrathin thickness and potential applications in electronics and optoelectronics. Monolayer SnS2, with a band gap of -2.6 eV, has an octahedral lattice made of two atomic layers of sulfur and one atomic layer of tin. Till date, there have been limited reports on the growth of large-scale and high quality SnS2 atomic layers and the investigation of their properties as a semiconductor. Here, we report the chemical vapor deposition (CVD) growth of atomic-layer SnS2 with a large crystal size and uniformity. In addition, the number of layers can be changed from a monolayer to few layers and to bulk by changing the growth time. Scanning transmission electron microscopy was used to analyze the atomic structure and demonstrate the 2H stacking poly-type of different layers. The resultant SnS2 crystals is used as a photodetector with external quantum efficiency as high as 150%, suggesting promise for optoelectronic applications. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-017-1436-3 |