Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag
A Z-scheme is a promising approach to achieve broad-spectrum photocatalysis. Integration of TiO2 with another semiconductor with a band gap of -1.0 eV would be ideal to harvest both ultraviolet and visible-near infrared light for photocatalysis; however, most narrow-bandgap semiconductors have strad...
Gespeichert in:
Veröffentlicht in: | Nano research 2015-11, Vol.8 (11), p.3621-3629 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3629 |
---|---|
container_issue | 11 |
container_start_page | 3621 |
container_title | Nano research |
container_volume | 8 |
creator | Li, Yanrui Li, Leilei Gong, Yunqi Bai, Song Ju, Huanxin Wang, Chengming Xu, Qian Zhu, Junfa Jiang, Jun Xiong, Yujie |
description | A Z-scheme is a promising approach to achieve broad-spectrum photocatalysis. Integration of TiO2 with another semiconductor with a band gap of -1.0 eV would be ideal to harvest both ultraviolet and visible-near infrared light for photocatalysis; however, most narrow-bandgap semiconductors have straddling band structure alignments with TiO2, constituting an obstacle to forming the Z-scheme for photocatalytic hydrogen production. In this communication, we demonstrate Ag2S as a model system where the energy band upshift of the narrow-bandgap semiconductor that shares an interface with a metal can overcome this limitation. To fabricate the design, we developed a unique approach to synthesize Ag2S-Ag-TiO2 hybrid structures. The obtained ternary hybrid structures exhibited dramatically enhanced performance in photocatalytic hydrogen pro- duction under full-spectrum light illumination. The activities were significantly higher than the sum of those of Ag2S-Ag-TiO2 structures under λ〈 400 nm and λ 〉 400 nm irradiation as well as those of their counterparts under any light illumination conditions. |
doi_str_mv | 10.1007/s12274-015-0862-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001471033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>666900115</cqvip_id><sourcerecordid>2001471033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-3d7c39feb9e45f6d8215cedf92a045a9b42b31fc985a4a01d18b43d442a0dc1e3</originalsourceid><addsrcrecordid>eNp9UEtu2zAQFYoUqOP2AN0RzZoJh6RkaWkYTRogQBZ1N90QFDWSaMiUTNI1fIbcoGfJnXKFSLDT7DqbGWDeZ-YlyVdg18DY4iYA5wtJGaSU5Rmn4kMyg6LIKRvr4m0GLj8llyFsGMs4yHyWPK37g_ZVIPW-62gY0ES_35Kh7WNvdNTdMdjw8vyXLE1r8Y91DdHkNw2mxS2SEuMB0ZFlw38S7Sqyto-clEeCrrEO0U94dOibIymnve5s47boIjnY2BLrIvpaG6u7UeNz8rHWXcAv5z5Pft1-X69-0IfHu_vV8oEaCSJSUS2MKGosC5RpnVU5h9RgVRdcM5nqopS8FFCbIk-11AwqyEspKinHfWUAxTy5OukOvt_tMUS16ffejZaKMwZyAUyIEQUnlPF9CB5rNXi71f6ogKkpc3XKXI2ZqylzNXH4iROG6XX078r_I307G7W9a3Yj759TlmXFeBGk4hX1FpJt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001471033</pqid></control><display><type>article</type><title>Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag</title><source>Springer Nature - Complete Springer Journals</source><creator>Li, Yanrui ; Li, Leilei ; Gong, Yunqi ; Bai, Song ; Ju, Huanxin ; Wang, Chengming ; Xu, Qian ; Zhu, Junfa ; Jiang, Jun ; Xiong, Yujie</creator><creatorcontrib>Li, Yanrui ; Li, Leilei ; Gong, Yunqi ; Bai, Song ; Ju, Huanxin ; Wang, Chengming ; Xu, Qian ; Zhu, Junfa ; Jiang, Jun ; Xiong, Yujie</creatorcontrib><description>A Z-scheme is a promising approach to achieve broad-spectrum photocatalysis. Integration of TiO2 with another semiconductor with a band gap of -1.0 eV would be ideal to harvest both ultraviolet and visible-near infrared light for photocatalysis; however, most narrow-bandgap semiconductors have straddling band structure alignments with TiO2, constituting an obstacle to forming the Z-scheme for photocatalytic hydrogen production. In this communication, we demonstrate Ag2S as a model system where the energy band upshift of the narrow-bandgap semiconductor that shares an interface with a metal can overcome this limitation. To fabricate the design, we developed a unique approach to synthesize Ag2S-Ag-TiO2 hybrid structures. The obtained ternary hybrid structures exhibited dramatically enhanced performance in photocatalytic hydrogen pro- duction under full-spectrum light illumination. The activities were significantly higher than the sum of those of Ag2S-Ag-TiO2 structures under λ〈 400 nm and λ 〉 400 nm irradiation as well as those of their counterparts under any light illumination conditions.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-015-0862-3</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Ag2S ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Communications systems ; Condensed Matter Physics ; Hybrid structures ; Hydrogen production ; Illumination ; Infrared radiation ; Irradiation ; Light ; Materials Science ; Nanotechnology ; Photocatalysis ; Research Article ; TiO2 ; Titanium dioxide ; Ultraviolet radiation ; 光催化 ; 全光谱 ; 对准 ; 界面 ; 窄禁带半导体 ; 能带工程</subject><ispartof>Nano research, 2015-11, Vol.8 (11), p.3621-3629</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Nano Research is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-3d7c39feb9e45f6d8215cedf92a045a9b42b31fc985a4a01d18b43d442a0dc1e3</citedby><cites>FETCH-LOGICAL-c413t-3d7c39feb9e45f6d8215cedf92a045a9b42b31fc985a4a01d18b43d442a0dc1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-015-0862-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-015-0862-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Li, Yanrui</creatorcontrib><creatorcontrib>Li, Leilei</creatorcontrib><creatorcontrib>Gong, Yunqi</creatorcontrib><creatorcontrib>Bai, Song</creatorcontrib><creatorcontrib>Ju, Huanxin</creatorcontrib><creatorcontrib>Wang, Chengming</creatorcontrib><creatorcontrib>Xu, Qian</creatorcontrib><creatorcontrib>Zhu, Junfa</creatorcontrib><creatorcontrib>Jiang, Jun</creatorcontrib><creatorcontrib>Xiong, Yujie</creatorcontrib><title>Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>A Z-scheme is a promising approach to achieve broad-spectrum photocatalysis. Integration of TiO2 with another semiconductor with a band gap of -1.0 eV would be ideal to harvest both ultraviolet and visible-near infrared light for photocatalysis; however, most narrow-bandgap semiconductors have straddling band structure alignments with TiO2, constituting an obstacle to forming the Z-scheme for photocatalytic hydrogen production. In this communication, we demonstrate Ag2S as a model system where the energy band upshift of the narrow-bandgap semiconductor that shares an interface with a metal can overcome this limitation. To fabricate the design, we developed a unique approach to synthesize Ag2S-Ag-TiO2 hybrid structures. The obtained ternary hybrid structures exhibited dramatically enhanced performance in photocatalytic hydrogen pro- duction under full-spectrum light illumination. The activities were significantly higher than the sum of those of Ag2S-Ag-TiO2 structures under λ〈 400 nm and λ 〉 400 nm irradiation as well as those of their counterparts under any light illumination conditions.</description><subject>Ag2S</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Communications systems</subject><subject>Condensed Matter Physics</subject><subject>Hybrid structures</subject><subject>Hydrogen production</subject><subject>Illumination</subject><subject>Infrared radiation</subject><subject>Irradiation</subject><subject>Light</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Photocatalysis</subject><subject>Research Article</subject><subject>TiO2</subject><subject>Titanium dioxide</subject><subject>Ultraviolet radiation</subject><subject>光催化</subject><subject>全光谱</subject><subject>对准</subject><subject>界面</subject><subject>窄禁带半导体</subject><subject>能带工程</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UEtu2zAQFYoUqOP2AN0RzZoJh6RkaWkYTRogQBZ1N90QFDWSaMiUTNI1fIbcoGfJnXKFSLDT7DqbGWDeZ-YlyVdg18DY4iYA5wtJGaSU5Rmn4kMyg6LIKRvr4m0GLj8llyFsGMs4yHyWPK37g_ZVIPW-62gY0ES_35Kh7WNvdNTdMdjw8vyXLE1r8Y91DdHkNw2mxS2SEuMB0ZFlw38S7Sqyto-clEeCrrEO0U94dOibIymnve5s47boIjnY2BLrIvpaG6u7UeNz8rHWXcAv5z5Pft1-X69-0IfHu_vV8oEaCSJSUS2MKGosC5RpnVU5h9RgVRdcM5nqopS8FFCbIk-11AwqyEspKinHfWUAxTy5OukOvt_tMUS16ffejZaKMwZyAUyIEQUnlPF9CB5rNXi71f6ogKkpc3XKXI2ZqylzNXH4iROG6XX078r_I307G7W9a3Yj759TlmXFeBGk4hX1FpJt</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Li, Yanrui</creator><creator>Li, Leilei</creator><creator>Gong, Yunqi</creator><creator>Bai, Song</creator><creator>Ju, Huanxin</creator><creator>Wang, Chengming</creator><creator>Xu, Qian</creator><creator>Zhu, Junfa</creator><creator>Jiang, Jun</creator><creator>Xiong, Yujie</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20151101</creationdate><title>Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag</title><author>Li, Yanrui ; Li, Leilei ; Gong, Yunqi ; Bai, Song ; Ju, Huanxin ; Wang, Chengming ; Xu, Qian ; Zhu, Junfa ; Jiang, Jun ; Xiong, Yujie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-3d7c39feb9e45f6d8215cedf92a045a9b42b31fc985a4a01d18b43d442a0dc1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ag2S</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Communications systems</topic><topic>Condensed Matter Physics</topic><topic>Hybrid structures</topic><topic>Hydrogen production</topic><topic>Illumination</topic><topic>Infrared radiation</topic><topic>Irradiation</topic><topic>Light</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Photocatalysis</topic><topic>Research Article</topic><topic>TiO2</topic><topic>Titanium dioxide</topic><topic>Ultraviolet radiation</topic><topic>光催化</topic><topic>全光谱</topic><topic>对准</topic><topic>界面</topic><topic>窄禁带半导体</topic><topic>能带工程</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yanrui</creatorcontrib><creatorcontrib>Li, Leilei</creatorcontrib><creatorcontrib>Gong, Yunqi</creatorcontrib><creatorcontrib>Bai, Song</creatorcontrib><creatorcontrib>Ju, Huanxin</creatorcontrib><creatorcontrib>Wang, Chengming</creatorcontrib><creatorcontrib>Xu, Qian</creatorcontrib><creatorcontrib>Zhu, Junfa</creatorcontrib><creatorcontrib>Jiang, Jun</creatorcontrib><creatorcontrib>Xiong, Yujie</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yanrui</au><au>Li, Leilei</au><au>Gong, Yunqi</au><au>Bai, Song</au><au>Ju, Huanxin</au><au>Wang, Chengming</au><au>Xu, Qian</au><au>Zhu, Junfa</au><au>Jiang, Jun</au><au>Xiong, Yujie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2015-11-01</date><risdate>2015</risdate><volume>8</volume><issue>11</issue><spage>3621</spage><epage>3629</epage><pages>3621-3629</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>A Z-scheme is a promising approach to achieve broad-spectrum photocatalysis. Integration of TiO2 with another semiconductor with a band gap of -1.0 eV would be ideal to harvest both ultraviolet and visible-near infrared light for photocatalysis; however, most narrow-bandgap semiconductors have straddling band structure alignments with TiO2, constituting an obstacle to forming the Z-scheme for photocatalytic hydrogen production. In this communication, we demonstrate Ag2S as a model system where the energy band upshift of the narrow-bandgap semiconductor that shares an interface with a metal can overcome this limitation. To fabricate the design, we developed a unique approach to synthesize Ag2S-Ag-TiO2 hybrid structures. The obtained ternary hybrid structures exhibited dramatically enhanced performance in photocatalytic hydrogen pro- duction under full-spectrum light illumination. The activities were significantly higher than the sum of those of Ag2S-Ag-TiO2 structures under λ〈 400 nm and λ 〉 400 nm irradiation as well as those of their counterparts under any light illumination conditions.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-015-0862-3</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2015-11, Vol.8 (11), p.3621-3629 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2001471033 |
source | Springer Nature - Complete Springer Journals |
subjects | Ag2S Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Communications systems Condensed Matter Physics Hybrid structures Hydrogen production Illumination Infrared radiation Irradiation Light Materials Science Nanotechnology Photocatalysis Research Article TiO2 Titanium dioxide Ultraviolet radiation 光催化 全光谱 对准 界面 窄禁带半导体 能带工程 |
title | Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20full-spectrum%20photocatalysis%EF%BC%9A%20Achieving%20a%20Z-scheme%20between%20Ag2S%20and%20TiO2%20by%20engineering%20energy%20band%20alignment%20with%20interfacial%20Ag&rft.jtitle=Nano%20research&rft.au=Li,%20Yanrui&rft.date=2015-11-01&rft.volume=8&rft.issue=11&rft.spage=3621&rft.epage=3629&rft.pages=3621-3629&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-015-0862-3&rft_dat=%3Cproquest_cross%3E2001471033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001471033&rft_id=info:pmid/&rft_cqvip_id=666900115&rfr_iscdi=true |