Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag
A Z-scheme is a promising approach to achieve broad-spectrum photocatalysis. Integration of TiO2 with another semiconductor with a band gap of -1.0 eV would be ideal to harvest both ultraviolet and visible-near infrared light for photocatalysis; however, most narrow-bandgap semiconductors have strad...
Gespeichert in:
Veröffentlicht in: | Nano research 2015-11, Vol.8 (11), p.3621-3629 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A Z-scheme is a promising approach to achieve broad-spectrum photocatalysis. Integration of TiO2 with another semiconductor with a band gap of -1.0 eV would be ideal to harvest both ultraviolet and visible-near infrared light for photocatalysis; however, most narrow-bandgap semiconductors have straddling band structure alignments with TiO2, constituting an obstacle to forming the Z-scheme for photocatalytic hydrogen production. In this communication, we demonstrate Ag2S as a model system where the energy band upshift of the narrow-bandgap semiconductor that shares an interface with a metal can overcome this limitation. To fabricate the design, we developed a unique approach to synthesize Ag2S-Ag-TiO2 hybrid structures. The obtained ternary hybrid structures exhibited dramatically enhanced performance in photocatalytic hydrogen pro- duction under full-spectrum light illumination. The activities were significantly higher than the sum of those of Ag2S-Ag-TiO2 structures under λ〈 400 nm and λ 〉 400 nm irradiation as well as those of their counterparts under any light illumination conditions. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-015-0862-3 |