System of nonlinear variational inclusion problems with $(A,\eta)$-maximal monotonicity in Banach spaces
This paper deals with a new system of nonlinear variational inclusion problems involving $(A,\eta)$-maximal relaxed monotone and relative $(A,\eta)$-maximal monotone mappings in 2-uniformly smooth Banach spaces. Using the generalized resolvent operator technique, the approximation solvability of the...
Gespeichert in:
Veröffentlicht in: | Statistics, optimization & information computing optimization & information computing, 2017-08, Vol.5 (3), p.244 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 244 |
container_title | Statistics, optimization & information computing |
container_volume | 5 |
creator | Sahu, Nabin Kumar Mahato, N. K. Mohapatra, R. N. |
description | This paper deals with a new system of nonlinear variational inclusion problems involving $(A,\eta)$-maximal relaxed monotone and relative $(A,\eta)$-maximal monotone mappings in 2-uniformly smooth Banach spaces. Using the generalized resolvent operator technique, the approximation solvability of the proposed problem is investigated. An iterative algorithm is constructed to approximate the solution of the problem. Convergence analysis of the proposed algorithm is investigated. Similar results are also proved for other system of variational inclusion problems involving relative $(A,\eta)$-maximal monotone mappings and $(H,\eta)$-maximal monotone mappings. |
doi_str_mv | 10.19139/soic.v5i3.238 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2001384386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2001384386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1126-7cf3ec3970e5414b20f342f985d201ea4a84b67c1280f645dd8cae01671803233</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWGqvngP2oOCuk4_dzR5r8QsKHlTwIIQ0zdKU3aQm22r_vWnrad7DM8O8D0KXBHJSE1bfRW91vi0syykTJ2hAGYGsgApOD5lkAPzzHI1iXAEAqYqiBDpAy7dd7E2HfYOdd611RgW8VcGq3nqnWmydbjcxZbwOft6aLuIf2y_x-Hpy-2V6dTPOOvVru4R23vneO6ttv0t7-F45pZc4rpU28QKdNaqNZvQ_h-jj8eF9-pzNXp9eppNZpgmhZVbphhnN6gpMwQmfU2gYp00tigUFYhRXgs_LShMqoCl5sVgIrQyQsiICGGVsiK6Od9O73xsTe7nym5CaRElTbyY4E2Wi8iOlg48xmEauQ-oQdpKAPAiVe6FyL1QmoewPBXhpuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001384386</pqid></control><display><type>article</type><title>System of nonlinear variational inclusion problems with $(A,\eta)$-maximal monotonicity in Banach spaces</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sahu, Nabin Kumar ; Mahato, N. K. ; Mohapatra, R. N.</creator><creatorcontrib>Sahu, Nabin Kumar ; Mahato, N. K. ; Mohapatra, R. N.</creatorcontrib><description>This paper deals with a new system of nonlinear variational inclusion problems involving $(A,\eta)$-maximal relaxed monotone and relative $(A,\eta)$-maximal monotone mappings in 2-uniformly smooth Banach spaces. Using the generalized resolvent operator technique, the approximation solvability of the proposed problem is investigated. An iterative algorithm is constructed to approximate the solution of the problem. Convergence analysis of the proposed algorithm is investigated. Similar results are also proved for other system of variational inclusion problems involving relative $(A,\eta)$-maximal monotone mappings and $(H,\eta)$-maximal monotone mappings.</description><identifier>ISSN: 2311-004X</identifier><identifier>EISSN: 2310-5070</identifier><identifier>DOI: 10.19139/soic.v5i3.238</identifier><language>eng</language><publisher>Hong Kong: International Academic Press (Hong Kong)</publisher><subject>Banach spaces ; Error analysis ; Iterative algorithms</subject><ispartof>Statistics, optimization & information computing, 2017-08, Vol.5 (3), p.244</ispartof><rights>(c) 2017. This work is licensed under CC BY 3.0 Unported - https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1126-7cf3ec3970e5414b20f342f985d201ea4a84b67c1280f645dd8cae01671803233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Sahu, Nabin Kumar</creatorcontrib><creatorcontrib>Mahato, N. K.</creatorcontrib><creatorcontrib>Mohapatra, R. N.</creatorcontrib><title>System of nonlinear variational inclusion problems with $(A,\eta)$-maximal monotonicity in Banach spaces</title><title>Statistics, optimization & information computing</title><description>This paper deals with a new system of nonlinear variational inclusion problems involving $(A,\eta)$-maximal relaxed monotone and relative $(A,\eta)$-maximal monotone mappings in 2-uniformly smooth Banach spaces. Using the generalized resolvent operator technique, the approximation solvability of the proposed problem is investigated. An iterative algorithm is constructed to approximate the solution of the problem. Convergence analysis of the proposed algorithm is investigated. Similar results are also proved for other system of variational inclusion problems involving relative $(A,\eta)$-maximal monotone mappings and $(H,\eta)$-maximal monotone mappings.</description><subject>Banach spaces</subject><subject>Error analysis</subject><subject>Iterative algorithms</subject><issn>2311-004X</issn><issn>2310-5070</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkE1LAzEQhoMoWGqvngP2oOCuk4_dzR5r8QsKHlTwIIQ0zdKU3aQm22r_vWnrad7DM8O8D0KXBHJSE1bfRW91vi0syykTJ2hAGYGsgApOD5lkAPzzHI1iXAEAqYqiBDpAy7dd7E2HfYOdd611RgW8VcGq3nqnWmydbjcxZbwOft6aLuIf2y_x-Hpy-2V6dTPOOvVru4R23vneO6ttv0t7-F45pZc4rpU28QKdNaqNZvQ_h-jj8eF9-pzNXp9eppNZpgmhZVbphhnN6gpMwQmfU2gYp00tigUFYhRXgs_LShMqoCl5sVgIrQyQsiICGGVsiK6Od9O73xsTe7nym5CaRElTbyY4E2Wi8iOlg48xmEauQ-oQdpKAPAiVe6FyL1QmoewPBXhpuQ</recordid><startdate>20170829</startdate><enddate>20170829</enddate><creator>Sahu, Nabin Kumar</creator><creator>Mahato, N. K.</creator><creator>Mohapatra, R. N.</creator><general>International Academic Press (Hong Kong)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20170829</creationdate><title>System of nonlinear variational inclusion problems with $(A,\eta)$-maximal monotonicity in Banach spaces</title><author>Sahu, Nabin Kumar ; Mahato, N. K. ; Mohapatra, R. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1126-7cf3ec3970e5414b20f342f985d201ea4a84b67c1280f645dd8cae01671803233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Banach spaces</topic><topic>Error analysis</topic><topic>Iterative algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Sahu, Nabin Kumar</creatorcontrib><creatorcontrib>Mahato, N. K.</creatorcontrib><creatorcontrib>Mohapatra, R. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Statistics, optimization & information computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahu, Nabin Kumar</au><au>Mahato, N. K.</au><au>Mohapatra, R. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>System of nonlinear variational inclusion problems with $(A,\eta)$-maximal monotonicity in Banach spaces</atitle><jtitle>Statistics, optimization & information computing</jtitle><date>2017-08-29</date><risdate>2017</risdate><volume>5</volume><issue>3</issue><spage>244</spage><pages>244-</pages><issn>2311-004X</issn><eissn>2310-5070</eissn><abstract>This paper deals with a new system of nonlinear variational inclusion problems involving $(A,\eta)$-maximal relaxed monotone and relative $(A,\eta)$-maximal monotone mappings in 2-uniformly smooth Banach spaces. Using the generalized resolvent operator technique, the approximation solvability of the proposed problem is investigated. An iterative algorithm is constructed to approximate the solution of the problem. Convergence analysis of the proposed algorithm is investigated. Similar results are also proved for other system of variational inclusion problems involving relative $(A,\eta)$-maximal monotone mappings and $(H,\eta)$-maximal monotone mappings.</abstract><cop>Hong Kong</cop><pub>International Academic Press (Hong Kong)</pub><doi>10.19139/soic.v5i3.238</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2311-004X |
ispartof | Statistics, optimization & information computing, 2017-08, Vol.5 (3), p.244 |
issn | 2311-004X 2310-5070 |
language | eng |
recordid | cdi_proquest_journals_2001384386 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Banach spaces Error analysis Iterative algorithms |
title | System of nonlinear variational inclusion problems with $(A,\eta)$-maximal monotonicity in Banach spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=System%20of%20nonlinear%20variational%20inclusion%20problems%20with%20$(A,%5Ceta)$-maximal%20monotonicity%20in%20Banach%20spaces&rft.jtitle=Statistics,%20optimization%20&%20information%20computing&rft.au=Sahu,%20Nabin%20Kumar&rft.date=2017-08-29&rft.volume=5&rft.issue=3&rft.spage=244&rft.pages=244-&rft.issn=2311-004X&rft.eissn=2310-5070&rft_id=info:doi/10.19139/soic.v5i3.238&rft_dat=%3Cproquest_cross%3E2001384386%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001384386&rft_id=info:pmid/&rfr_iscdi=true |