System of nonlinear variational inclusion problems with $(A,\eta)$-maximal monotonicity in Banach spaces

This paper deals with a new system of nonlinear variational inclusion problems involving $(A,\eta)$-maximal relaxed monotone and relative $(A,\eta)$-maximal monotone mappings in 2-uniformly smooth Banach spaces. Using the generalized resolvent operator technique, the approximation solvability of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics, optimization & information computing optimization & information computing, 2017-08, Vol.5 (3), p.244
Hauptverfasser: Sahu, Nabin Kumar, Mahato, N. K., Mohapatra, R. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with a new system of nonlinear variational inclusion problems involving $(A,\eta)$-maximal relaxed monotone and relative $(A,\eta)$-maximal monotone mappings in 2-uniformly smooth Banach spaces. Using the generalized resolvent operator technique, the approximation solvability of the proposed problem is investigated. An iterative algorithm is constructed to approximate the solution of the problem. Convergence analysis of the proposed algorithm is investigated. Similar results are also proved for other system of variational inclusion problems involving relative $(A,\eta)$-maximal monotone mappings and $(H,\eta)$-maximal monotone mappings.
ISSN:2311-004X
2310-5070
DOI:10.19139/soic.v5i3.238