Quasilinear Schrödinger equations with unbounded or decaying potentials

We study the existence of nonnegative and nonzero solutions for the following class of quasilinear Schrödinger equations: −Δu+V(|x|)u−[Δ(u2)]u=Q(|x|)g(u),x∈RN,u(x)→0 as |x|→∞,where V and Q are potentials that can be singular at the origin, unbounded or vanishing at infinity. In order to prove our ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2018-02, Vol.291 (2-3), p.492-517
Hauptverfasser: Severo, Uberlandio B., de Carvalho, Gilson M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the existence of nonnegative and nonzero solutions for the following class of quasilinear Schrödinger equations: −Δu+V(|x|)u−[Δ(u2)]u=Q(|x|)g(u),x∈RN,u(x)→0 as |x|→∞,where V and Q are potentials that can be singular at the origin, unbounded or vanishing at infinity. In order to prove our existence result we used minimax techniques in a suitable weighted Orlicz space together with regularity arguments and we need to obtain a symmetric criticality type result.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201600028