Quasilinear Schrödinger equations with unbounded or decaying potentials
We study the existence of nonnegative and nonzero solutions for the following class of quasilinear Schrödinger equations: −Δu+V(|x|)u−[Δ(u2)]u=Q(|x|)g(u),x∈RN,u(x)→0 as |x|→∞,where V and Q are potentials that can be singular at the origin, unbounded or vanishing at infinity. In order to prove our ex...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2018-02, Vol.291 (2-3), p.492-517 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the existence of nonnegative and nonzero solutions for the following class of quasilinear Schrödinger equations:
−Δu+V(|x|)u−[Δ(u2)]u=Q(|x|)g(u),x∈RN,u(x)→0 as |x|→∞,where V and Q are potentials that can be singular at the origin, unbounded or vanishing at infinity. In order to prove our existence result we used minimax techniques in a suitable weighted Orlicz space together with regularity arguments and we need to obtain a symmetric criticality type result. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.201600028 |