Density estimation with distribution element trees

The estimation of probability densities based on available data is a central task in many statistical applications. Especially in the case of large ensembles with many samples or high-dimensional sample spaces, computationally efficient methods are needed. We propose a new method that is based on a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2018-05, Vol.28 (3), p.609-632
1. Verfasser: Meyer, Daniel W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The estimation of probability densities based on available data is a central task in many statistical applications. Especially in the case of large ensembles with many samples or high-dimensional sample spaces, computationally efficient methods are needed. We propose a new method that is based on a decomposition of the unknown distribution in terms of so-called distribution elements (DEs). These elements enable an adaptive and hierarchical discretization of the sample space with small or large elements in regions with smoothly or highly variable densities, respectively. The novel refinement strategy that we propose is based on statistical goodness-of-fit and pairwise (as an approximation to mutual) independence tests that evaluate the local approximation of the distribution in terms of DEs. The capabilities of our new method are inspected based on several examples of different dimensionality and successfully compared with other state-of-the-art density estimators.
ISSN:0960-3174
1573-1375
DOI:10.1007/s11222-017-9751-9