Without-replacement sampling for particle methods on finite state spaces
Combinatorial estimation is a new area of application for sequential Monte Carlo methods. We use ideas from sampling theory to introduce new without-replacement sampling methods in such discrete settings. These without-replacement sampling methods allow the addition of merging steps, which can signi...
Gespeichert in:
Veröffentlicht in: | Statistics and computing 2018-05, Vol.28 (3), p.633-652 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 652 |
---|---|
container_issue | 3 |
container_start_page | 633 |
container_title | Statistics and computing |
container_volume | 28 |
creator | Shah, Rohan Kroese, Dirk P. |
description | Combinatorial estimation is a new area of application for sequential Monte Carlo methods. We use ideas from sampling theory to introduce new without-replacement sampling methods in such discrete settings. These without-replacement sampling methods allow the addition of merging steps, which can significantly improve the resulting estimators. We give examples showing the use of the proposed methods in combinatorial rare-event probability estimation and in discrete state-space models. |
doi_str_mv | 10.1007/s11222-017-9752-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2000296535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000296535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-1e374df544cbdf00ca6989804a72f7b09d93736f4de31e036f4d3af7d2fab6033</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3QmySa7RylqhYIXxWNId5O6Zb9M0oP_3tQVPHmZmcPzvgMPIdcItwig7yIi55wBalbpgrPyhCyw0IKh0MUpWUClgAnU8pxcxLgHQFRCLsj6vU0f4yGx4KbO1q53Q6LR9lPXDjvqx0AnG1Jbd472LpNNpONAfTu0ydGY7HFOORcvyZm3XXRXv3tJ3h4fXldrtnl5el7db1jNVZkYOqFl4wsp623jAWqrqrIqQVrNvd5C1VRCC-Vl4wQ6-LmE9brh3m4VCLEkN3PvFMbPg4vJ7MdDGPJLwwGAV6oQRaZwpuowxhicN1Noexu-DII5CjOzMJOFmaMwU-YMnzMxs8POhb_m_0PfgxpuGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000296535</pqid></control><display><type>article</type><title>Without-replacement sampling for particle methods on finite state spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shah, Rohan ; Kroese, Dirk P.</creator><creatorcontrib>Shah, Rohan ; Kroese, Dirk P.</creatorcontrib><description>Combinatorial estimation is a new area of application for sequential Monte Carlo methods. We use ideas from sampling theory to introduce new without-replacement sampling methods in such discrete settings. These without-replacement sampling methods allow the addition of merging steps, which can significantly improve the resulting estimators. We give examples showing the use of the proposed methods in combinatorial rare-event probability estimation and in discrete state-space models.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-017-9752-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Combinatorial analysis ; Computer simulation ; Mathematics and Statistics ; Monte Carlo simulation ; Particle methods (mathematics) ; Probabilistic methods ; Probability and Statistics in Computer Science ; Sampling methods ; State space models ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs</subject><ispartof>Statistics and computing, 2018-05, Vol.28 (3), p.633-652</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-1e374df544cbdf00ca6989804a72f7b09d93736f4de31e036f4d3af7d2fab6033</cites><orcidid>0000-0002-9689-5915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11222-017-9752-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11222-017-9752-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Shah, Rohan</creatorcontrib><creatorcontrib>Kroese, Dirk P.</creatorcontrib><title>Without-replacement sampling for particle methods on finite state spaces</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>Combinatorial estimation is a new area of application for sequential Monte Carlo methods. We use ideas from sampling theory to introduce new without-replacement sampling methods in such discrete settings. These without-replacement sampling methods allow the addition of merging steps, which can significantly improve the resulting estimators. We give examples showing the use of the proposed methods in combinatorial rare-event probability estimation and in discrete state-space models.</description><subject>Artificial Intelligence</subject><subject>Combinatorial analysis</subject><subject>Computer simulation</subject><subject>Mathematics and Statistics</subject><subject>Monte Carlo simulation</subject><subject>Particle methods (mathematics)</subject><subject>Probabilistic methods</subject><subject>Probability and Statistics in Computer Science</subject><subject>Sampling methods</subject><subject>State space models</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3QmySa7RylqhYIXxWNId5O6Zb9M0oP_3tQVPHmZmcPzvgMPIdcItwig7yIi55wBalbpgrPyhCyw0IKh0MUpWUClgAnU8pxcxLgHQFRCLsj6vU0f4yGx4KbO1q53Q6LR9lPXDjvqx0AnG1Jbd472LpNNpONAfTu0ydGY7HFOORcvyZm3XXRXv3tJ3h4fXldrtnl5el7db1jNVZkYOqFl4wsp623jAWqrqrIqQVrNvd5C1VRCC-Vl4wQ6-LmE9brh3m4VCLEkN3PvFMbPg4vJ7MdDGPJLwwGAV6oQRaZwpuowxhicN1Noexu-DII5CjOzMJOFmaMwU-YMnzMxs8POhb_m_0PfgxpuGA</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Shah, Rohan</creator><creator>Kroese, Dirk P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9689-5915</orcidid></search><sort><creationdate>20180501</creationdate><title>Without-replacement sampling for particle methods on finite state spaces</title><author>Shah, Rohan ; Kroese, Dirk P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-1e374df544cbdf00ca6989804a72f7b09d93736f4de31e036f4d3af7d2fab6033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Combinatorial analysis</topic><topic>Computer simulation</topic><topic>Mathematics and Statistics</topic><topic>Monte Carlo simulation</topic><topic>Particle methods (mathematics)</topic><topic>Probabilistic methods</topic><topic>Probability and Statistics in Computer Science</topic><topic>Sampling methods</topic><topic>State space models</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Rohan</creatorcontrib><creatorcontrib>Kroese, Dirk P.</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Rohan</au><au>Kroese, Dirk P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Without-replacement sampling for particle methods on finite state spaces</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>28</volume><issue>3</issue><spage>633</spage><epage>652</epage><pages>633-652</pages><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>Combinatorial estimation is a new area of application for sequential Monte Carlo methods. We use ideas from sampling theory to introduce new without-replacement sampling methods in such discrete settings. These without-replacement sampling methods allow the addition of merging steps, which can significantly improve the resulting estimators. We give examples showing the use of the proposed methods in combinatorial rare-event probability estimation and in discrete state-space models.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-017-9752-8</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9689-5915</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-3174 |
ispartof | Statistics and computing, 2018-05, Vol.28 (3), p.633-652 |
issn | 0960-3174 1573-1375 |
language | eng |
recordid | cdi_proquest_journals_2000296535 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Combinatorial analysis Computer simulation Mathematics and Statistics Monte Carlo simulation Particle methods (mathematics) Probabilistic methods Probability and Statistics in Computer Science Sampling methods State space models Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs |
title | Without-replacement sampling for particle methods on finite state spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Without-replacement%20sampling%20for%20particle%20methods%20on%20finite%20state%20spaces&rft.jtitle=Statistics%20and%20computing&rft.au=Shah,%20Rohan&rft.date=2018-05-01&rft.volume=28&rft.issue=3&rft.spage=633&rft.epage=652&rft.pages=633-652&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-017-9752-8&rft_dat=%3Cproquest_cross%3E2000296535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000296535&rft_id=info:pmid/&rfr_iscdi=true |