Without-replacement sampling for particle methods on finite state spaces

Combinatorial estimation is a new area of application for sequential Monte Carlo methods. We use ideas from sampling theory to introduce new without-replacement sampling methods in such discrete settings. These without-replacement sampling methods allow the addition of merging steps, which can signi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2018-05, Vol.28 (3), p.633-652
Hauptverfasser: Shah, Rohan, Kroese, Dirk P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 652
container_issue 3
container_start_page 633
container_title Statistics and computing
container_volume 28
creator Shah, Rohan
Kroese, Dirk P.
description Combinatorial estimation is a new area of application for sequential Monte Carlo methods. We use ideas from sampling theory to introduce new without-replacement sampling methods in such discrete settings. These without-replacement sampling methods allow the addition of merging steps, which can significantly improve the resulting estimators. We give examples showing the use of the proposed methods in combinatorial rare-event probability estimation and in discrete state-space models.
doi_str_mv 10.1007/s11222-017-9752-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2000296535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000296535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-1e374df544cbdf00ca6989804a72f7b09d93736f4de31e036f4d3af7d2fab6033</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAc3QmySa7RylqhYIXxWNId5O6Zb9M0oP_3tQVPHmZmcPzvgMPIdcItwig7yIi55wBalbpgrPyhCyw0IKh0MUpWUClgAnU8pxcxLgHQFRCLsj6vU0f4yGx4KbO1q53Q6LR9lPXDjvqx0AnG1Jbd472LpNNpONAfTu0ydGY7HFOORcvyZm3XXRXv3tJ3h4fXldrtnl5el7db1jNVZkYOqFl4wsp623jAWqrqrIqQVrNvd5C1VRCC-Vl4wQ6-LmE9brh3m4VCLEkN3PvFMbPg4vJ7MdDGPJLwwGAV6oQRaZwpuowxhicN1Noexu-DII5CjOzMJOFmaMwU-YMnzMxs8POhb_m_0PfgxpuGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000296535</pqid></control><display><type>article</type><title>Without-replacement sampling for particle methods on finite state spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shah, Rohan ; Kroese, Dirk P.</creator><creatorcontrib>Shah, Rohan ; Kroese, Dirk P.</creatorcontrib><description>Combinatorial estimation is a new area of application for sequential Monte Carlo methods. We use ideas from sampling theory to introduce new without-replacement sampling methods in such discrete settings. These without-replacement sampling methods allow the addition of merging steps, which can significantly improve the resulting estimators. We give examples showing the use of the proposed methods in combinatorial rare-event probability estimation and in discrete state-space models.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-017-9752-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Combinatorial analysis ; Computer simulation ; Mathematics and Statistics ; Monte Carlo simulation ; Particle methods (mathematics) ; Probabilistic methods ; Probability and Statistics in Computer Science ; Sampling methods ; State space models ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs</subject><ispartof>Statistics and computing, 2018-05, Vol.28 (3), p.633-652</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-1e374df544cbdf00ca6989804a72f7b09d93736f4de31e036f4d3af7d2fab6033</cites><orcidid>0000-0002-9689-5915</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11222-017-9752-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11222-017-9752-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Shah, Rohan</creatorcontrib><creatorcontrib>Kroese, Dirk P.</creatorcontrib><title>Without-replacement sampling for particle methods on finite state spaces</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>Combinatorial estimation is a new area of application for sequential Monte Carlo methods. We use ideas from sampling theory to introduce new without-replacement sampling methods in such discrete settings. These without-replacement sampling methods allow the addition of merging steps, which can significantly improve the resulting estimators. We give examples showing the use of the proposed methods in combinatorial rare-event probability estimation and in discrete state-space models.</description><subject>Artificial Intelligence</subject><subject>Combinatorial analysis</subject><subject>Computer simulation</subject><subject>Mathematics and Statistics</subject><subject>Monte Carlo simulation</subject><subject>Particle methods (mathematics)</subject><subject>Probabilistic methods</subject><subject>Probability and Statistics in Computer Science</subject><subject>Sampling methods</subject><subject>State space models</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAc3QmySa7RylqhYIXxWNId5O6Zb9M0oP_3tQVPHmZmcPzvgMPIdcItwig7yIi55wBalbpgrPyhCyw0IKh0MUpWUClgAnU8pxcxLgHQFRCLsj6vU0f4yGx4KbO1q53Q6LR9lPXDjvqx0AnG1Jbd472LpNNpONAfTu0ydGY7HFOORcvyZm3XXRXv3tJ3h4fXldrtnl5el7db1jNVZkYOqFl4wsp623jAWqrqrIqQVrNvd5C1VRCC-Vl4wQ6-LmE9brh3m4VCLEkN3PvFMbPg4vJ7MdDGPJLwwGAV6oQRaZwpuowxhicN1Noexu-DII5CjOzMJOFmaMwU-YMnzMxs8POhb_m_0PfgxpuGA</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Shah, Rohan</creator><creator>Kroese, Dirk P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9689-5915</orcidid></search><sort><creationdate>20180501</creationdate><title>Without-replacement sampling for particle methods on finite state spaces</title><author>Shah, Rohan ; Kroese, Dirk P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-1e374df544cbdf00ca6989804a72f7b09d93736f4de31e036f4d3af7d2fab6033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Combinatorial analysis</topic><topic>Computer simulation</topic><topic>Mathematics and Statistics</topic><topic>Monte Carlo simulation</topic><topic>Particle methods (mathematics)</topic><topic>Probabilistic methods</topic><topic>Probability and Statistics in Computer Science</topic><topic>Sampling methods</topic><topic>State space models</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Rohan</creatorcontrib><creatorcontrib>Kroese, Dirk P.</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Rohan</au><au>Kroese, Dirk P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Without-replacement sampling for particle methods on finite state spaces</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>28</volume><issue>3</issue><spage>633</spage><epage>652</epage><pages>633-652</pages><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>Combinatorial estimation is a new area of application for sequential Monte Carlo methods. We use ideas from sampling theory to introduce new without-replacement sampling methods in such discrete settings. These without-replacement sampling methods allow the addition of merging steps, which can significantly improve the resulting estimators. We give examples showing the use of the proposed methods in combinatorial rare-event probability estimation and in discrete state-space models.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-017-9752-8</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-9689-5915</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-3174
ispartof Statistics and computing, 2018-05, Vol.28 (3), p.633-652
issn 0960-3174
1573-1375
language eng
recordid cdi_proquest_journals_2000296535
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Combinatorial analysis
Computer simulation
Mathematics and Statistics
Monte Carlo simulation
Particle methods (mathematics)
Probabilistic methods
Probability and Statistics in Computer Science
Sampling methods
State space models
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
title Without-replacement sampling for particle methods on finite state spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Without-replacement%20sampling%20for%20particle%20methods%20on%20finite%20state%20spaces&rft.jtitle=Statistics%20and%20computing&rft.au=Shah,%20Rohan&rft.date=2018-05-01&rft.volume=28&rft.issue=3&rft.spage=633&rft.epage=652&rft.pages=633-652&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-017-9752-8&rft_dat=%3Cproquest_cross%3E2000296535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000296535&rft_id=info:pmid/&rfr_iscdi=true