Without-replacement sampling for particle methods on finite state spaces
Combinatorial estimation is a new area of application for sequential Monte Carlo methods. We use ideas from sampling theory to introduce new without-replacement sampling methods in such discrete settings. These without-replacement sampling methods allow the addition of merging steps, which can signi...
Gespeichert in:
Veröffentlicht in: | Statistics and computing 2018-05, Vol.28 (3), p.633-652 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Combinatorial estimation is a new area of application for sequential Monte Carlo methods. We use ideas from sampling theory to introduce new without-replacement sampling methods in such discrete settings. These without-replacement sampling methods allow the addition of merging steps, which can significantly improve the resulting estimators. We give examples showing the use of the proposed methods in combinatorial rare-event probability estimation and in discrete state-space models. |
---|---|
ISSN: | 0960-3174 1573-1375 |
DOI: | 10.1007/s11222-017-9752-8 |