Without-replacement sampling for particle methods on finite state spaces

Combinatorial estimation is a new area of application for sequential Monte Carlo methods. We use ideas from sampling theory to introduce new without-replacement sampling methods in such discrete settings. These without-replacement sampling methods allow the addition of merging steps, which can signi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2018-05, Vol.28 (3), p.633-652
Hauptverfasser: Shah, Rohan, Kroese, Dirk P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Combinatorial estimation is a new area of application for sequential Monte Carlo methods. We use ideas from sampling theory to introduce new without-replacement sampling methods in such discrete settings. These without-replacement sampling methods allow the addition of merging steps, which can significantly improve the resulting estimators. We give examples showing the use of the proposed methods in combinatorial rare-event probability estimation and in discrete state-space models.
ISSN:0960-3174
1573-1375
DOI:10.1007/s11222-017-9752-8