Non-auto Bäclund transformation, nonlocal symmetry and CRE solvability for the Bogoyavlenskii–Kadomtsev–Petviashvili equation

In this paper, we study the Bogoyavlenskii–Kadomtsev– Petviashvili (BKP) equation by using the truncated Painlevé method and consistent Riccati expansion (CRE). Through the truncated Painlevé method, its nonlocal symmetry and non-auto Bäcklund transformation are presented. The nonlocal symmetry is l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2017-12, Vol.74 (12), p.3296-3302
Hauptverfasser: Wang, Chuanjian, Fang, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the Bogoyavlenskii–Kadomtsev– Petviashvili (BKP) equation by using the truncated Painlevé method and consistent Riccati expansion (CRE). Through the truncated Painlevé method, its nonlocal symmetry and non-auto Bäcklund transformation are presented. The nonlocal symmetry is localized to a local Lie point group via a prolonged system. Moreover, with the help of the CRE method, we prove that the BKP equation is CRE solvable. Finally, the kink-lump wave interaction solution of BKP equation is explicitly given by using the trilinear form. The interaction between kink wave and lump wave is investigated and exhibited mathematically and graphically.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2017.08.012