Nonlinear damped wave equation: Existence and blow-up
In this paper, we consider the following nonlinear wave equation with variable exponents: utt−Δu+aut|ut|m(⋅)−2=bu|u|p(⋅)−2,where a,b are positive constants. By using the Faedo–Galerkin method, the existence of a unique weak solution is established under suitable assumptions on the variable exponents...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2017-12, Vol.74 (12), p.3024-3041 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the following nonlinear wave equation with variable exponents: utt−Δu+aut|ut|m(⋅)−2=bu|u|p(⋅)−2,where a,b are positive constants. By using the Faedo–Galerkin method, the existence of a unique weak solution is established under suitable assumptions on the variable exponents m and p. We also prove the finite time blow-up of solutions and give a two-dimension numerical example to illustrate the blow up result. |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2017.07.048 |