A linear construction for certain Kerdock and Preparata codes

The Nordstrom-Robinson, Kerdock, and (slightly modified) Preparata codes are shown to be linear over Z 4 {\mathbb {Z}_4} , the integers mod 4 {\bmod \;4} . The Kerdock and Preparata codes are duals over Z 4 {\mathbb {Z}_4} , and the Nordstrom-Robinson code is self-dual. All these codes are just exte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin (new series) of the American Mathematical Society 1993-10, Vol.29 (2), p.218-222
Hauptverfasser: Calderbank, A. R., Hammons, A. R., Kumar, P. Vijay, Sloane, N. J. A., Solé, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Nordstrom-Robinson, Kerdock, and (slightly modified) Preparata codes are shown to be linear over Z 4 {\mathbb {Z}_4} , the integers mod 4 {\bmod \;4} . The Kerdock and Preparata codes are duals over Z 4 {\mathbb {Z}_4} , and the Nordstrom-Robinson code is self-dual. All these codes are just extended cyclic codes over Z 4 {\mathbb {Z}_4} . This provides a simple definition for these codes and explains why their Hamming weight distributions are dual to each other. First- and second-order Reed-Muller codes are also linear codes over Z 4 {\mathbb {Z}_4} , but Hamming codes in general are not, nor is the Golay code.
ISSN:0273-0979
1088-9485
DOI:10.1090/S0273-0979-1993-00426-9