A linear construction for certain Kerdock and Preparata codes
The Nordstrom-Robinson, Kerdock, and (slightly modified) Preparata codes are shown to be linear over Z 4 {\mathbb {Z}_4} , the integers mod 4 {\bmod \;4} . The Kerdock and Preparata codes are duals over Z 4 {\mathbb {Z}_4} , and the Nordstrom-Robinson code is self-dual. All these codes are just exte...
Gespeichert in:
Veröffentlicht in: | Bulletin (new series) of the American Mathematical Society 1993-10, Vol.29 (2), p.218-222 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Nordstrom-Robinson, Kerdock, and (slightly modified) Preparata codes are shown to be linear over
Z
4
{\mathbb {Z}_4}
, the integers
mod
4
{\bmod \;4}
. The Kerdock and Preparata codes are duals over
Z
4
{\mathbb {Z}_4}
, and the Nordstrom-Robinson code is self-dual. All these codes are just extended cyclic codes over
Z
4
{\mathbb {Z}_4}
. This provides a simple definition for these codes and explains why their Hamming weight distributions are dual to each other. First- and second-order Reed-Muller codes are also linear codes over
Z
4
{\mathbb {Z}_4}
, but Hamming codes in general are not, nor is the Golay code. |
---|---|
ISSN: | 0273-0979 1088-9485 |
DOI: | 10.1090/S0273-0979-1993-00426-9 |