Hempel's Raven Paradox: A Lacuna in the Standard Bayesian Solution
According to Hempel's paradox, evidence (E) that an object is a nonblack nonraven confirms the hypothesis (H) that every raven is black. According to the standard Bayesian solution, E does confirm H but only to a minute degree. This solution relies on the almost never explicitly defended assump...
Gespeichert in:
Veröffentlicht in: | The British journal for the philosophy of science 2004-09, Vol.55 (3), p.545-560 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 560 |
---|---|
container_issue | 3 |
container_start_page | 545 |
container_title | The British journal for the philosophy of science |
container_volume | 55 |
creator | Vranas, Peter B. M. |
description | According to Hempel's paradox, evidence (E) that an object is a nonblack nonraven confirms the hypothesis (H) that every raven is black. According to the standard Bayesian solution, E does confirm H but only to a minute degree. This solution relies on the almost never explicitly defended assumption that the probability of H should not be affected by evidence that an object is nonblack. I argue that this assumption is implausible, and I propose a way out for Bayesians. Introduction Hempel's paradox, the standard Bayesian solution, and the disputed assumption Attempts to defend the disputed assumption Attempts to refute the disputed assumption A way out for Bayesians Conclusion |
doi_str_mv | 10.1093/bjps/55.3.545 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_199645925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3541674</jstor_id><sourcerecordid>3541674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-643c7c9f7d7f6df9931a75a0a00d0d449379c50091de49efe5584c4bf8ec72a13</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsH4cvXlYBPWUupv96npri7VKQLEq4mUZNxtNbZO4m0j996a0WE_DMM88M7wIHVHSpUSzi7dpFS6E6LKu4GILdSiXPGKCqW3UIYSoiPR68S7aC2HatlJq3kGDsZtXbnYe8AN8uwLfg4e0XFziPk7ANgXgvMD1h8OTGooUfIoH8ONCDgWelLOmzsviAO1kMAvucF330dPo6nE4jpK765thP4ksj1kdSc6ssjpTqcpkmmnNKCgBBAhJScq5ZkpbQYimqePaZU6IHrf8Les5q2KgbB-drLyVL78aF2ozLRtftCcN1VpyoWPRQtEKsr4MwbvMVD6fg_8xlJhlSmaZkhHCMNOm1PKnaykEC7PMQ2HzsFmSlIqY8pY7W3GN_cgtvJeVdyFsPvgnPF6B01CX_k_EBKdS8c1_eajd4m8M_tNIxZQw45dXc_s4GE2SZ20S9gsCsoyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199645925</pqid></control><display><type>article</type><title>Hempel's Raven Paradox: A Lacuna in the Standard Bayesian Solution</title><source>Jstor Complete Legacy</source><creator>Vranas, Peter B. M.</creator><creatorcontrib>Vranas, Peter B. M.</creatorcontrib><description>According to Hempel's paradox, evidence (E) that an object is a nonblack nonraven confirms the hypothesis (H) that every raven is black. According to the standard Bayesian solution, E does confirm H but only to a minute degree. This solution relies on the almost never explicitly defended assumption that the probability of H should not be affected by evidence that an object is nonblack. I argue that this assumption is implausible, and I propose a way out for Bayesians. Introduction Hempel's paradox, the standard Bayesian solution, and the disputed assumption Attempts to defend the disputed assumption Attempts to refute the disputed assumption A way out for Bayesians Conclusion</description><identifier>ISSN: 0007-0882</identifier><identifier>EISSN: 1464-3537</identifier><identifier>DOI: 10.1093/bjps/55.3.545</identifier><identifier>CODEN: BJPIA5</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Ambivalence ; Bayesian analysis ; Belief ; Cubes ; Grandmothers ; History of science and technology ; Hypotheses ; Inductive logic ; Inference ; Logic and calculus ; Mathematical sciences and techniques ; Paradoxes ; Philosophy of science ; Probability ; Ravens ; Reasoning</subject><ispartof>The British journal for the philosophy of science, 2004-09, Vol.55 (3), p.545-560</ispartof><rights>Copyright 2004 British Society for the Philosophy of Science</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Sep 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-643c7c9f7d7f6df9931a75a0a00d0d449379c50091de49efe5584c4bf8ec72a13</citedby><cites>FETCH-LOGICAL-c423t-643c7c9f7d7f6df9931a75a0a00d0d449379c50091de49efe5584c4bf8ec72a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3541674$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3541674$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16115214$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vranas, Peter B. M.</creatorcontrib><title>Hempel's Raven Paradox: A Lacuna in the Standard Bayesian Solution</title><title>The British journal for the philosophy of science</title><addtitle>Br J Philos Sci</addtitle><description>According to Hempel's paradox, evidence (E) that an object is a nonblack nonraven confirms the hypothesis (H) that every raven is black. According to the standard Bayesian solution, E does confirm H but only to a minute degree. This solution relies on the almost never explicitly defended assumption that the probability of H should not be affected by evidence that an object is nonblack. I argue that this assumption is implausible, and I propose a way out for Bayesians. Introduction Hempel's paradox, the standard Bayesian solution, and the disputed assumption Attempts to defend the disputed assumption Attempts to refute the disputed assumption A way out for Bayesians Conclusion</description><subject>Ambivalence</subject><subject>Bayesian analysis</subject><subject>Belief</subject><subject>Cubes</subject><subject>Grandmothers</subject><subject>History of science and technology</subject><subject>Hypotheses</subject><subject>Inductive logic</subject><subject>Inference</subject><subject>Logic and calculus</subject><subject>Mathematical sciences and techniques</subject><subject>Paradoxes</subject><subject>Philosophy of science</subject><subject>Probability</subject><subject>Ravens</subject><subject>Reasoning</subject><issn>0007-0882</issn><issn>1464-3537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsH4cvXlYBPWUupv96npri7VKQLEq4mUZNxtNbZO4m0j996a0WE_DMM88M7wIHVHSpUSzi7dpFS6E6LKu4GILdSiXPGKCqW3UIYSoiPR68S7aC2HatlJq3kGDsZtXbnYe8AN8uwLfg4e0XFziPk7ANgXgvMD1h8OTGooUfIoH8ONCDgWelLOmzsviAO1kMAvucF330dPo6nE4jpK765thP4ksj1kdSc6ssjpTqcpkmmnNKCgBBAhJScq5ZkpbQYimqePaZU6IHrf8Les5q2KgbB-drLyVL78aF2ozLRtftCcN1VpyoWPRQtEKsr4MwbvMVD6fg_8xlJhlSmaZkhHCMNOm1PKnaykEC7PMQ2HzsFmSlIqY8pY7W3GN_cgtvJeVdyFsPvgnPF6B01CX_k_EBKdS8c1_eajd4m8M_tNIxZQw45dXc_s4GE2SZ20S9gsCsoyg</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Vranas, Peter B. M.</creator><general>Oxford University Press</general><general>The University of Chicago Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040901</creationdate><title>Hempel's Raven Paradox: A Lacuna in the Standard Bayesian Solution</title><author>Vranas, Peter B. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-643c7c9f7d7f6df9931a75a0a00d0d449379c50091de49efe5584c4bf8ec72a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Ambivalence</topic><topic>Bayesian analysis</topic><topic>Belief</topic><topic>Cubes</topic><topic>Grandmothers</topic><topic>History of science and technology</topic><topic>Hypotheses</topic><topic>Inductive logic</topic><topic>Inference</topic><topic>Logic and calculus</topic><topic>Mathematical sciences and techniques</topic><topic>Paradoxes</topic><topic>Philosophy of science</topic><topic>Probability</topic><topic>Ravens</topic><topic>Reasoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vranas, Peter B. M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The British journal for the philosophy of science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vranas, Peter B. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hempel's Raven Paradox: A Lacuna in the Standard Bayesian Solution</atitle><jtitle>The British journal for the philosophy of science</jtitle><addtitle>Br J Philos Sci</addtitle><date>2004-09-01</date><risdate>2004</risdate><volume>55</volume><issue>3</issue><spage>545</spage><epage>560</epage><pages>545-560</pages><issn>0007-0882</issn><eissn>1464-3537</eissn><coden>BJPIA5</coden><abstract>According to Hempel's paradox, evidence (E) that an object is a nonblack nonraven confirms the hypothesis (H) that every raven is black. According to the standard Bayesian solution, E does confirm H but only to a minute degree. This solution relies on the almost never explicitly defended assumption that the probability of H should not be affected by evidence that an object is nonblack. I argue that this assumption is implausible, and I propose a way out for Bayesians. Introduction Hempel's paradox, the standard Bayesian solution, and the disputed assumption Attempts to defend the disputed assumption Attempts to refute the disputed assumption A way out for Bayesians Conclusion</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/bjps/55.3.545</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-0882 |
ispartof | The British journal for the philosophy of science, 2004-09, Vol.55 (3), p.545-560 |
issn | 0007-0882 1464-3537 |
language | eng |
recordid | cdi_proquest_journals_199645925 |
source | Jstor Complete Legacy |
subjects | Ambivalence Bayesian analysis Belief Cubes Grandmothers History of science and technology Hypotheses Inductive logic Inference Logic and calculus Mathematical sciences and techniques Paradoxes Philosophy of science Probability Ravens Reasoning |
title | Hempel's Raven Paradox: A Lacuna in the Standard Bayesian Solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hempel's%20Raven%20Paradox:%20A%20Lacuna%20in%20the%20Standard%20Bayesian%20Solution&rft.jtitle=The%20British%20journal%20for%20the%20philosophy%20of%20science&rft.au=Vranas,%20Peter%20B.%20M.&rft.date=2004-09-01&rft.volume=55&rft.issue=3&rft.spage=545&rft.epage=560&rft.pages=545-560&rft.issn=0007-0882&rft.eissn=1464-3537&rft.coden=BJPIA5&rft_id=info:doi/10.1093/bjps/55.3.545&rft_dat=%3Cjstor_proqu%3E3541674%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199645925&rft_id=info:pmid/&rft_jstor_id=3541674&rfr_iscdi=true |