Hempel's Raven Paradox: A Lacuna in the Standard Bayesian Solution

According to Hempel's paradox, evidence (E) that an object is a nonblack nonraven confirms the hypothesis (H) that every raven is black. According to the standard Bayesian solution, E does confirm H but only to a minute degree. This solution relies on the almost never explicitly defended assump...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The British journal for the philosophy of science 2004-09, Vol.55 (3), p.545-560
1. Verfasser: Vranas, Peter B. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 560
container_issue 3
container_start_page 545
container_title The British journal for the philosophy of science
container_volume 55
creator Vranas, Peter B. M.
description According to Hempel's paradox, evidence (E) that an object is a nonblack nonraven confirms the hypothesis (H) that every raven is black. According to the standard Bayesian solution, E does confirm H but only to a minute degree. This solution relies on the almost never explicitly defended assumption that the probability of H should not be affected by evidence that an object is nonblack. I argue that this assumption is implausible, and I propose a way out for Bayesians. Introduction Hempel's paradox, the standard Bayesian solution, and the disputed assumption Attempts to defend the disputed assumption Attempts to refute the disputed assumption A way out for Bayesians Conclusion
doi_str_mv 10.1093/bjps/55.3.545
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_199645925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3541674</jstor_id><sourcerecordid>3541674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-643c7c9f7d7f6df9931a75a0a00d0d449379c50091de49efe5584c4bf8ec72a13</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsH4cvXlYBPWUupv96npri7VKQLEq4mUZNxtNbZO4m0j996a0WE_DMM88M7wIHVHSpUSzi7dpFS6E6LKu4GILdSiXPGKCqW3UIYSoiPR68S7aC2HatlJq3kGDsZtXbnYe8AN8uwLfg4e0XFziPk7ANgXgvMD1h8OTGooUfIoH8ONCDgWelLOmzsviAO1kMAvucF330dPo6nE4jpK765thP4ksj1kdSc6ssjpTqcpkmmnNKCgBBAhJScq5ZkpbQYimqePaZU6IHrf8Les5q2KgbB-drLyVL78aF2ozLRtftCcN1VpyoWPRQtEKsr4MwbvMVD6fg_8xlJhlSmaZkhHCMNOm1PKnaykEC7PMQ2HzsFmSlIqY8pY7W3GN_cgtvJeVdyFsPvgnPF6B01CX_k_EBKdS8c1_eajd4m8M_tNIxZQw45dXc_s4GE2SZ20S9gsCsoyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199645925</pqid></control><display><type>article</type><title>Hempel's Raven Paradox: A Lacuna in the Standard Bayesian Solution</title><source>Jstor Complete Legacy</source><creator>Vranas, Peter B. M.</creator><creatorcontrib>Vranas, Peter B. M.</creatorcontrib><description>According to Hempel's paradox, evidence (E) that an object is a nonblack nonraven confirms the hypothesis (H) that every raven is black. According to the standard Bayesian solution, E does confirm H but only to a minute degree. This solution relies on the almost never explicitly defended assumption that the probability of H should not be affected by evidence that an object is nonblack. I argue that this assumption is implausible, and I propose a way out for Bayesians. Introduction Hempel's paradox, the standard Bayesian solution, and the disputed assumption Attempts to defend the disputed assumption Attempts to refute the disputed assumption A way out for Bayesians Conclusion</description><identifier>ISSN: 0007-0882</identifier><identifier>EISSN: 1464-3537</identifier><identifier>DOI: 10.1093/bjps/55.3.545</identifier><identifier>CODEN: BJPIA5</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Ambivalence ; Bayesian analysis ; Belief ; Cubes ; Grandmothers ; History of science and technology ; Hypotheses ; Inductive logic ; Inference ; Logic and calculus ; Mathematical sciences and techniques ; Paradoxes ; Philosophy of science ; Probability ; Ravens ; Reasoning</subject><ispartof>The British journal for the philosophy of science, 2004-09, Vol.55 (3), p.545-560</ispartof><rights>Copyright 2004 British Society for the Philosophy of Science</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Sep 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-643c7c9f7d7f6df9931a75a0a00d0d449379c50091de49efe5584c4bf8ec72a13</citedby><cites>FETCH-LOGICAL-c423t-643c7c9f7d7f6df9931a75a0a00d0d449379c50091de49efe5584c4bf8ec72a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3541674$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3541674$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16115214$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vranas, Peter B. M.</creatorcontrib><title>Hempel's Raven Paradox: A Lacuna in the Standard Bayesian Solution</title><title>The British journal for the philosophy of science</title><addtitle>Br J Philos Sci</addtitle><description>According to Hempel's paradox, evidence (E) that an object is a nonblack nonraven confirms the hypothesis (H) that every raven is black. According to the standard Bayesian solution, E does confirm H but only to a minute degree. This solution relies on the almost never explicitly defended assumption that the probability of H should not be affected by evidence that an object is nonblack. I argue that this assumption is implausible, and I propose a way out for Bayesians. Introduction Hempel's paradox, the standard Bayesian solution, and the disputed assumption Attempts to defend the disputed assumption Attempts to refute the disputed assumption A way out for Bayesians Conclusion</description><subject>Ambivalence</subject><subject>Bayesian analysis</subject><subject>Belief</subject><subject>Cubes</subject><subject>Grandmothers</subject><subject>History of science and technology</subject><subject>Hypotheses</subject><subject>Inductive logic</subject><subject>Inference</subject><subject>Logic and calculus</subject><subject>Mathematical sciences and techniques</subject><subject>Paradoxes</subject><subject>Philosophy of science</subject><subject>Probability</subject><subject>Ravens</subject><subject>Reasoning</subject><issn>0007-0882</issn><issn>1464-3537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRsH4cvXlYBPWUupv96npri7VKQLEq4mUZNxtNbZO4m0j996a0WE_DMM88M7wIHVHSpUSzi7dpFS6E6LKu4GILdSiXPGKCqW3UIYSoiPR68S7aC2HatlJq3kGDsZtXbnYe8AN8uwLfg4e0XFziPk7ANgXgvMD1h8OTGooUfIoH8ONCDgWelLOmzsviAO1kMAvucF330dPo6nE4jpK765thP4ksj1kdSc6ssjpTqcpkmmnNKCgBBAhJScq5ZkpbQYimqePaZU6IHrf8Les5q2KgbB-drLyVL78aF2ozLRtftCcN1VpyoWPRQtEKsr4MwbvMVD6fg_8xlJhlSmaZkhHCMNOm1PKnaykEC7PMQ2HzsFmSlIqY8pY7W3GN_cgtvJeVdyFsPvgnPF6B01CX_k_EBKdS8c1_eajd4m8M_tNIxZQw45dXc_s4GE2SZ20S9gsCsoyg</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Vranas, Peter B. M.</creator><general>Oxford University Press</general><general>The University of Chicago Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040901</creationdate><title>Hempel's Raven Paradox: A Lacuna in the Standard Bayesian Solution</title><author>Vranas, Peter B. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-643c7c9f7d7f6df9931a75a0a00d0d449379c50091de49efe5584c4bf8ec72a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Ambivalence</topic><topic>Bayesian analysis</topic><topic>Belief</topic><topic>Cubes</topic><topic>Grandmothers</topic><topic>History of science and technology</topic><topic>Hypotheses</topic><topic>Inductive logic</topic><topic>Inference</topic><topic>Logic and calculus</topic><topic>Mathematical sciences and techniques</topic><topic>Paradoxes</topic><topic>Philosophy of science</topic><topic>Probability</topic><topic>Ravens</topic><topic>Reasoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vranas, Peter B. M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The British journal for the philosophy of science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vranas, Peter B. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hempel's Raven Paradox: A Lacuna in the Standard Bayesian Solution</atitle><jtitle>The British journal for the philosophy of science</jtitle><addtitle>Br J Philos Sci</addtitle><date>2004-09-01</date><risdate>2004</risdate><volume>55</volume><issue>3</issue><spage>545</spage><epage>560</epage><pages>545-560</pages><issn>0007-0882</issn><eissn>1464-3537</eissn><coden>BJPIA5</coden><abstract>According to Hempel's paradox, evidence (E) that an object is a nonblack nonraven confirms the hypothesis (H) that every raven is black. According to the standard Bayesian solution, E does confirm H but only to a minute degree. This solution relies on the almost never explicitly defended assumption that the probability of H should not be affected by evidence that an object is nonblack. I argue that this assumption is implausible, and I propose a way out for Bayesians. Introduction Hempel's paradox, the standard Bayesian solution, and the disputed assumption Attempts to defend the disputed assumption Attempts to refute the disputed assumption A way out for Bayesians Conclusion</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/bjps/55.3.545</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-0882
ispartof The British journal for the philosophy of science, 2004-09, Vol.55 (3), p.545-560
issn 0007-0882
1464-3537
language eng
recordid cdi_proquest_journals_199645925
source Jstor Complete Legacy
subjects Ambivalence
Bayesian analysis
Belief
Cubes
Grandmothers
History of science and technology
Hypotheses
Inductive logic
Inference
Logic and calculus
Mathematical sciences and techniques
Paradoxes
Philosophy of science
Probability
Ravens
Reasoning
title Hempel's Raven Paradox: A Lacuna in the Standard Bayesian Solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A11%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hempel's%20Raven%20Paradox:%20A%20Lacuna%20in%20the%20Standard%20Bayesian%20Solution&rft.jtitle=The%20British%20journal%20for%20the%20philosophy%20of%20science&rft.au=Vranas,%20Peter%20B.%20M.&rft.date=2004-09-01&rft.volume=55&rft.issue=3&rft.spage=545&rft.epage=560&rft.pages=545-560&rft.issn=0007-0882&rft.eissn=1464-3537&rft.coden=BJPIA5&rft_id=info:doi/10.1093/bjps/55.3.545&rft_dat=%3Cjstor_proqu%3E3541674%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199645925&rft_id=info:pmid/&rft_jstor_id=3541674&rfr_iscdi=true