Algorithms of Inertial Mirror Descent in Convex Problems of Stochastic Optimization

A minimization problem for mathematical expectation of a convex loss function over given convex compact X ∈ R N is treated. It is assumed that the oracle sequentially returns stochastic subgradients for loss function at current points with uniformly bounded second moment. The aim consists in modific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation and remote control 2018, Vol.79 (1), p.78-88
1. Verfasser: Nazin, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue 1
container_start_page 78
container_title Automation and remote control
container_volume 79
creator Nazin, A. V.
description A minimization problem for mathematical expectation of a convex loss function over given convex compact X ∈ R N is treated. It is assumed that the oracle sequentially returns stochastic subgradients for loss function at current points with uniformly bounded second moment. The aim consists in modification of well-known mirror descent method proposed by A.S. Nemirovsky and D.B. Yudin in 1979 and having extended the standard gradient method. In the beginning, the idea of a new so-called method of Inertial Mirror Descent (IMD) on example of a deterministic optimization problem in R N with continuous time is demonstrated. Particularly, in Euclidean case the method of heavy ball is realized; it is noted that the new method no use additional point averaging. Further on, a discrete IMD algorithm is described; the upper bound on error over objective function (i.e., of the difference between current mean losses and their minimum) is proved.
doi_str_mv 10.1134/S0005117918010071
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1993616611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1993616611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8c8923dd8cb17b53f07ecdb3c144b1f0bc9e2e4fc746c2c0c27e607d504479623</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuA19VzkjRpL8f8GkwmTK9Lm6ZbRtfMJBP119tRLwTx6ly8z_MeeAm5RLhG5OJmCQAposoxAwRQeERGKCFLOHB2TEaHODnkp-QshA0AIjA-IstJu3LexvU2UNfQWWd8tGVLn6z3ztNbE7TpIrUdnbru3XzQZ--q1gz0Mjq9LkO0mi520W7tVxmt687JSVO2wVz83DF5vb97mT4m88XDbDqZJ5qneUwyneWM13WmK1RVyhtQRtcV1yhEhQ1UOjfMiEYrITXToJkyElSdghAql4yPydXQu_PubW9CLDZu77v-ZYF5ziVK2W8zJjhQ2rsQvGmKnbfb0n8WCMVhu-LPdr3DBif0bLcy_lfzv9I3NMxwIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993616611</pqid></control><display><type>article</type><title>Algorithms of Inertial Mirror Descent in Convex Problems of Stochastic Optimization</title><source>SpringerNature Journals</source><creator>Nazin, A. V.</creator><creatorcontrib>Nazin, A. V.</creatorcontrib><description>A minimization problem for mathematical expectation of a convex loss function over given convex compact X ∈ R N is treated. It is assumed that the oracle sequentially returns stochastic subgradients for loss function at current points with uniformly bounded second moment. The aim consists in modification of well-known mirror descent method proposed by A.S. Nemirovsky and D.B. Yudin in 1979 and having extended the standard gradient method. In the beginning, the idea of a new so-called method of Inertial Mirror Descent (IMD) on example of a deterministic optimization problem in R N with continuous time is demonstrated. Particularly, in Euclidean case the method of heavy ball is realized; it is noted that the new method no use additional point averaging. Further on, a discrete IMD algorithm is described; the upper bound on error over objective function (i.e., of the difference between current mean losses and their minimum) is proved.</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S0005117918010071</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Control ; Descent ; Mathematics ; Mathematics and Statistics ; Mechanical Engineering ; Mechatronics ; Optimization ; Robotics ; Systems Theory ; Topical Issue ; Upper bounds</subject><ispartof>Automation and remote control, 2018, Vol.79 (1), p.78-88</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8c8923dd8cb17b53f07ecdb3c144b1f0bc9e2e4fc746c2c0c27e607d504479623</citedby><cites>FETCH-LOGICAL-c359t-8c8923dd8cb17b53f07ecdb3c144b1f0bc9e2e4fc746c2c0c27e607d504479623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0005117918010071$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0005117918010071$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Nazin, A. V.</creatorcontrib><title>Algorithms of Inertial Mirror Descent in Convex Problems of Stochastic Optimization</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>A minimization problem for mathematical expectation of a convex loss function over given convex compact X ∈ R N is treated. It is assumed that the oracle sequentially returns stochastic subgradients for loss function at current points with uniformly bounded second moment. The aim consists in modification of well-known mirror descent method proposed by A.S. Nemirovsky and D.B. Yudin in 1979 and having extended the standard gradient method. In the beginning, the idea of a new so-called method of Inertial Mirror Descent (IMD) on example of a deterministic optimization problem in R N with continuous time is demonstrated. Particularly, in Euclidean case the method of heavy ball is realized; it is noted that the new method no use additional point averaging. Further on, a discrete IMD algorithm is described; the upper bound on error over objective function (i.e., of the difference between current mean losses and their minimum) is proved.</description><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Descent</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Optimization</subject><subject>Robotics</subject><subject>Systems Theory</subject><subject>Topical Issue</subject><subject>Upper bounds</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKc_wLuA19VzkjRpL8f8GkwmTK9Lm6ZbRtfMJBP119tRLwTx6ly8z_MeeAm5RLhG5OJmCQAposoxAwRQeERGKCFLOHB2TEaHODnkp-QshA0AIjA-IstJu3LexvU2UNfQWWd8tGVLn6z3ztNbE7TpIrUdnbru3XzQZ--q1gz0Mjq9LkO0mi520W7tVxmt687JSVO2wVz83DF5vb97mT4m88XDbDqZJ5qneUwyneWM13WmK1RVyhtQRtcV1yhEhQ1UOjfMiEYrITXToJkyElSdghAql4yPydXQu_PubW9CLDZu77v-ZYF5ziVK2W8zJjhQ2rsQvGmKnbfb0n8WCMVhu-LPdr3DBif0bLcy_lfzv9I3NMxwIQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Nazin, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>Algorithms of Inertial Mirror Descent in Convex Problems of Stochastic Optimization</title><author>Nazin, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8c8923dd8cb17b53f07ecdb3c144b1f0bc9e2e4fc746c2c0c27e607d504479623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Descent</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Optimization</topic><topic>Robotics</topic><topic>Systems Theory</topic><topic>Topical Issue</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazin, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazin, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithms of Inertial Mirror Descent in Convex Problems of Stochastic Optimization</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2018</date><risdate>2018</risdate><volume>79</volume><issue>1</issue><spage>78</spage><epage>88</epage><pages>78-88</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>A minimization problem for mathematical expectation of a convex loss function over given convex compact X ∈ R N is treated. It is assumed that the oracle sequentially returns stochastic subgradients for loss function at current points with uniformly bounded second moment. The aim consists in modification of well-known mirror descent method proposed by A.S. Nemirovsky and D.B. Yudin in 1979 and having extended the standard gradient method. In the beginning, the idea of a new so-called method of Inertial Mirror Descent (IMD) on example of a deterministic optimization problem in R N with continuous time is demonstrated. Particularly, in Euclidean case the method of heavy ball is realized; it is noted that the new method no use additional point averaging. Further on, a discrete IMD algorithm is described; the upper bound on error over objective function (i.e., of the difference between current mean losses and their minimum) is proved.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0005117918010071</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-1179
ispartof Automation and remote control, 2018, Vol.79 (1), p.78-88
issn 0005-1179
1608-3032
language eng
recordid cdi_proquest_journals_1993616611
source SpringerNature Journals
subjects CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Computer-Aided Engineering (CAD
Control
Descent
Mathematics
Mathematics and Statistics
Mechanical Engineering
Mechatronics
Optimization
Robotics
Systems Theory
Topical Issue
Upper bounds
title Algorithms of Inertial Mirror Descent in Convex Problems of Stochastic Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T20%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithms%20of%20Inertial%20Mirror%20Descent%20in%20Convex%20Problems%20of%20Stochastic%20Optimization&rft.jtitle=Automation%20and%20remote%20control&rft.au=Nazin,%20A.%20V.&rft.date=2018&rft.volume=79&rft.issue=1&rft.spage=78&rft.epage=88&rft.pages=78-88&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S0005117918010071&rft_dat=%3Cproquest_cross%3E1993616611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993616611&rft_id=info:pmid/&rfr_iscdi=true