Algorithms of Inertial Mirror Descent in Convex Problems of Stochastic Optimization

A minimization problem for mathematical expectation of a convex loss function over given convex compact X ∈ R N is treated. It is assumed that the oracle sequentially returns stochastic subgradients for loss function at current points with uniformly bounded second moment. The aim consists in modific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation and remote control 2018, Vol.79 (1), p.78-88
1. Verfasser: Nazin, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A minimization problem for mathematical expectation of a convex loss function over given convex compact X ∈ R N is treated. It is assumed that the oracle sequentially returns stochastic subgradients for loss function at current points with uniformly bounded second moment. The aim consists in modification of well-known mirror descent method proposed by A.S. Nemirovsky and D.B. Yudin in 1979 and having extended the standard gradient method. In the beginning, the idea of a new so-called method of Inertial Mirror Descent (IMD) on example of a deterministic optimization problem in R N with continuous time is demonstrated. Particularly, in Euclidean case the method of heavy ball is realized; it is noted that the new method no use additional point averaging. Further on, a discrete IMD algorithm is described; the upper bound on error over objective function (i.e., of the difference between current mean losses and their minimum) is proved.
ISSN:0005-1179
1608-3032
DOI:10.1134/S0005117918010071