A Mahalanobis metric learning-based polynomial kernel for classification of hyperspectral images
In this paper, to combine the advantage of both polynomial kernel and the Mahalanobis distance metric learning (DML) methods, we propose a Mahalanobis DML based polynomial kernel for the classification of hyperspectral images. To ensure the method is computing-saving, we adapt a fast iterative metho...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2018-02, Vol.29 (4), p.1103-1113 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, to combine the advantage of both polynomial kernel and the Mahalanobis distance metric learning (DML) methods, we propose a Mahalanobis DML based polynomial kernel for the classification of hyperspectral images. To ensure the method is computing-saving, we adapt a fast iterative method to learn the Mahalanobis matrix. Simulation experiment is conducted on two real hyperspectral data sets. To evaluate the proposed method, we compare it with the traditional radial basis function (RBF) kernel, polynomial kernel and the RBF-based Mahalanobis kernel, the result shows the performance of the proposed method did improve the capability of the polynomial kernel and also perform better than the RBF-based Mahalanobis kernel. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-016-2499-x |