Convergence Conditions for the Observed Mean Method in Stochastic Programming
The paper analyzes convergence conditions of the method of observed mean under nonstandard conditions, where dependent observations of random parameters are used and probabilistic optimization functions may be discontinuous indicators. For the case of dependent observations, large deviation type the...
Gespeichert in:
Veröffentlicht in: | Cybernetics and systems analysis 2018-02, Vol.54 (1), p.45-59 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper analyzes convergence conditions of the method of observed mean under nonstandard conditions, where dependent observations of random parameters are used and probabilistic optimization functions may be discontinuous indicators. For the case of dependent observations, large deviation type theorems for approximate optimal values and solutions are established. |
---|---|
ISSN: | 1060-0396 1573-8337 |
DOI: | 10.1007/s10559-018-0006-3 |