Convergence Conditions for the Observed Mean Method in Stochastic Programming

The paper analyzes convergence conditions of the method of observed mean under nonstandard conditions, where dependent observations of random parameters are used and probabilistic optimization functions may be discontinuous indicators. For the case of dependent observations, large deviation type the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis 2018-02, Vol.54 (1), p.45-59
Hauptverfasser: Knopov, P. S., Norkin, V. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper analyzes convergence conditions of the method of observed mean under nonstandard conditions, where dependent observations of random parameters are used and probabilistic optimization functions may be discontinuous indicators. For the case of dependent observations, large deviation type theorems for approximate optimal values and solutions are established.
ISSN:1060-0396
1573-8337
DOI:10.1007/s10559-018-0006-3